Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties

被引:111
作者
Huang, Liyu [1 ,2 ,3 ]
Lu, Chunxiang [1 ]
Wang, Fei [4 ]
Wang, Lu [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, Natl Engn Lab Carbon Fiber Technol, Taiyuan 030001, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
[4] Shanxi Gangke Carbon Mat Co Ltd, Taiyuan 030003, Peoples R China
关键词
POLY(VINYLIDENE FLUORIDE); DIELECTRIC PERMITTIVITY; MECHANICAL-PROPERTIES; CARBON NANOTUBES; GRAPHENE; NANOCOMPOSITES;
D O I
10.1039/c4ra07379g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new two-step process was developed to prepare PVDF/reduced graphene oxide (PVDF/rGO) composite films: the synthesis of PVDF/GO composite films and immersion of such films in hydrobromic acids for reduction. This method avoided the agglomeration of rGO during reduction in PVDF/GO solutions and efficiently improved the dispersion effect of rGO in the PVDF matrix. Meanwhile, it simplified the preparation process due to no modification of GO being required, and opened a feasible way to scale up the production of PVDF/rGO composites. Experiments showed that PVDF with nearly all beta phase was obtained when the content of rGO was 0.1 wt% (PrGO-0.1), and the dielectric constant increased from 10 for the neat PVDF to 41 for PrGO-0.1 at 1 kHz. The ferroelectric, piezoelectric, and dynamic mechanical properties of the PVDF/rGO composites were also comprehensively studied. As the content of the b phase was nearly 100%, the piezoelectric constant and remnant polarization of the PrGO-0.1 film increased by 78.6% and 69.3%, respectively, compared with those of the neat PVDF, and therefore became the highest among all composite films. The rGO also, to a great extent, helped to enhance the mechanical properties of the PVDF composites. As a result, the improved piezoelectric and ferroelectric properties made the PVDF/rGO composite films with 0.1 wt% rGO content much better piezoelectric energy transfer and ferroelectric storage materials than the neat PVDF.
引用
收藏
页码:45220 / 45229
页数:10
相关论文
共 46 条
[1]   The Role of Intercalated Water in Multilayered Graphene Oxide [J].
Acik, Muge ;
Mattevi, Cecilia ;
Gong, Cheng ;
Lee, Geunsik ;
Cho, Kyeongjae ;
Chhowalla, Manish ;
Chabal, Yves J. .
ACS NANO, 2010, 4 (10) :5861-5868
[2]   Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers [J].
Andrew, J. S. ;
Clarke, D. R. .
LANGMUIR, 2008, 24 (03) :670-672
[3]   Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites [J].
Ansari, Seema ;
Giannelis, Emmanuel P. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2009, 47 (09) :888-897
[4]   The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride) [J].
Benz, M ;
Euler, WB ;
Gregory, OJ .
MACROMOLECULES, 2002, 35 (07) :2682-2688
[5]   Characterization of PVDF membranes by vibrational spectroscopy [J].
Boccaccio, T ;
Bottino, A ;
Capannelli, G ;
Piaggio, P .
JOURNAL OF MEMBRANE SCIENCE, 2002, 210 (02) :315-329
[6]   Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing [J].
Chung, D. D. L. .
CARBON, 2012, 50 (09) :3342-3353
[7]   Computational study on the ring-opening reaction of protonated oxirane and methylpropene [J].
Coxon, James M. ;
Townsend, Michael A. E. .
TETRAHEDRON, 2007, 63 (25) :5665-5668
[8]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[9]   Preparation of graphite nanoplatelets and graphene sheets [J].
Geng, Yan ;
Wang, Shu Jun ;
Kim, Jang-Kyo .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 336 (02) :592-598
[10]   PZT/PVDF composites doped with carbon nanotubes [J].
Guan, Xinchun ;
Zhang, Yudong ;
Li, Hui ;
Ou, Jinping .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 194 :228-231