Thermal control system of the Exoplanet Characterisation Observatory Payload: design and predictions

被引:3
|
作者
Morgante, G. [1 ]
Terenzi, L. [1 ,10 ]
Eccleston, P. [2 ]
Bradshaw, T. [3 ]
Crook, M. [3 ]
Linder, M. [4 ]
Hunt, T. [5 ]
Winter, B. [5 ]
Focardi, M. [6 ]
Malaguti, G. [1 ]
Micela, G. [7 ]
Pace, E. [8 ]
Tinetti, G. [9 ]
机构
[1] INAF IASF Bologna, I-40129 Bologna, Italy
[2] STFC Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England
[3] STFC Rutherford Appleton Lab, Dept Technol, Didcot OX11 0QX, Oxon, England
[4] European Space Agcy, Estec, Sci & Robot Explorat Directorate, NL-2200 AG Noordwijk, Netherlands
[5] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[6] INAF, Osservatorio Astrofis Arcetri, I-51025 Florence, Italy
[7] INAF, Osservatorio Astron Palermo, I-90134 Palermo, Italy
[8] Univ Florence, Dip Fis & Astron, I-50019 Florence, Italy
[9] UCL, Dept Phys & Astron, London WC1E 6BT, England
[10] Univ E Campus, Fac Ingn, I-22060 Novedrate, CO, Italy
关键词
Exoplanets; EChO; Space instrumentation; Thermal control; Cryogenics; Infrared;
D O I
10.1007/s10686-015-9469-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to investigate exoplanetary atmospheres by undertaking spectroscopy of transiting planets in a wide spectral region from the visible to the mid-InfraRed (IR). The high sensitivity and the long exposures required by the mission need an extremely stable thermo-mechanical platform. The instrument is passively cooled down to approximately 40 K, together with the telescope assembly, by a V-Groove based design that exploits the L2 orbit favourable thermal conditions. The visible and short-IR wavelength detectors are maintained at the operating temperature of 40 K by a dedicated radiator coupled to the cold space. The mid-IR channels, require a lower operating temperature and are cooled by an active refrigerator: a 28 K Neon Joule-Thomson (JT) cold end, fed by a mechanical compressor. Temperature stability is one of the challenging issues of the whole architecture: periodical perturbations must be controlled before they reach the sensitive units of the instrument. An efficient thermal control system is required: the design is based on a combination of passive and active solutions. In this paper we describe the thermal architecture of the payload with the main cryo-chain stages and their temperature control systems. The requirements that drive the design and the trade-offs needed to enable the EChO exciting science in a technically feasible payload design are discussed. Thermal modelling results and preliminary performance predictions in terms of steady state and transient conditions are also reported. This paper is presented on behalf of the EChO Consortium.
引用
收藏
页码:771 / 800
页数:30
相关论文
共 50 条
  • [32] Obstacle Avoidance-based Control System Design of UAV with Suspended Payload
    Ren, Zhiheng
    Hu, Chaofang
    Wu, Hao
    Sun, Binghan
    Guo, Yao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6839 - 6844
  • [33] Design of thermal control system of EFFU
    Masuda, S.
    Yamaguchi, H.
    Nakao, K.
    Suzuki, S.
    Proceedings of the International Symposium on Space Technology and Science, 1990,
  • [34] The Instrument Control Unit of the ARIEL payload: design evolution following the Unit and Payload subsystems SRR (System Requirements Review)
    Noce, Vladimiro
    Focardi, Mauro
    Di Giorgio, Anna Maria
    Galli, Emanuele
    Farina, Maria
    Giusi, Giovanni
    Nunez, Marina Vela
    Naponiello, Luca
    Lorenzani, Andrea
    Serafini, Luca
    Blanco, Carlo Del Vecchio
    Verna, Marco
    Cara, Cristophe
    Berthe, Michel
    Martignac, Jerome
    Ottensamer, Roland
    Micela, Giuseppina
    Malaguti, Giuseppe
    Auricchio, Natalia
    Pace, Emanuele
    Preti, Giampaolo
    Miceli, Federico
    Pascale, Enzo
    Tinetti, Giovanna
    Eccleston, Paul
    Tommasi, Elisabetta
    De Persio, Fulvio
    Bolli, Pietro
    Nesti, Renzo
    Iuzzolino, Marcella
    Carbonaro, Luca
    Del Vecchio, Ciro
    Ferruzzi, Debora
    Brucalassi, Anna
    Falcini, Gilberto
    Tozzi, Andrea
    Gottini, Daniele
    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2022, 12180
  • [35] Stratospheric balloon dynamics predictions for robust ascent phase payload thermal analysis
    Fernandez-Soler, Alejandro
    Gonzalez-Barcena, David
    Torralbo, Ignacio
    Perez-Grande, Isabel
    ADVANCES IN SPACE RESEARCH, 2024, 74 (07) : 3216 - 3233
  • [36] PICARD payload thermal control system and general impact of the space environment on astronomical observations
    Meftah, M.
    Irbah, A.
    Hauchecorne, A.
    Hochedez, J. -F.
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS VI, 2013, 8739
  • [37] Aspects of control for a parafoil and payload system
    Slegers, N
    Costello, M
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2003, 26 (06) : 898 - 905
  • [38] THERMAL CONTROL-SYSTEM OF THE PURDUE-UNIVERSITY SPACE-SHUTTLE PAYLOAD
    STARK, JA
    JOURNAL OF SPACECRAFT AND ROCKETS, 1985, 22 (03) : 382 - 384
  • [39] The Observatory Control System of the LAMOST
    Zhao, YH
    OBSERVATORY OPERATIONS TO OPTIMIZE SCIENTIFIC RETURN II, 2000, 4010 : 290 - 297
  • [40] The WEAVE Observatory Control System
    Pico, Sergio
    Carlos Abrams, Don
    Benn, Chris
    Dominguez, Lilian
    Farina, Cecilia
    Miguel Delgado, Jose
    Martin, Carlos
    Cano, Diego
    Salasnich, Bernardo
    Guest, Steve
    Gribbin, Frank
    Skvarc, Jure
    Gafton, Emanuel
    Dalton, Gavin
    Middleton, Kevin
    Tragger, Scott
    Alfonso Aguerri, J.
    Bonifacio, Piercarlo
    Vallenari, Antonella
    Carrasco, Esperanza
    OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS VII, 2018, 10704