Optimal Transport Approximation of 2-Dimensional Measures

被引:12
作者
Lebrat, Leo [1 ]
de Gournay, Frederic [1 ]
Kahn, Jonas [2 ]
Weiss, Pierre [3 ]
机构
[1] Univ Toulouse, CNRS, Inst Math Toulouse, UMR5219,INSA, F-31077 Toulouse, France
[2] Univ Toulouse, CNRS, Inst Math Toulouse, UMR5219,UPS, F-31062 Toulouse 9, France
[3] Univ Toulouse, CNRS, ITAV, F-31106 Toulouse 1, France
关键词
Wasserstein distance; optimization; measure theory; sampling theory; blue noise; curve projection; quantization; path planning; nonphotorealistic rendering; ALGORITHM; QUANTIZATION; DIAGRAMS; MOTION;
D O I
10.1137/18M1193736
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a fast and scalable algorithm to project a given density on a set of structured measures defined over a compact 2D domain. The measures can be discrete or supported on curves, for instance. The proposed principle and algorithm are a natural generalization of previous results revolving around the generation of blue-noise point distributions, such as Lloyd's algorithm or more advanced techniques based on power diagrams. We analyze the convergence properties and propose new approaches to accelerate the generation of point distributions. We also design new algorithms to project curves onto spaces of curves with bounded length and curvature or speed and acceleration. We illustrate the algorithm's interest through applications in advanced sampling theory, nonphotorealistic rendering, and path planning.
引用
收藏
页码:762 / 787
页数:26
相关论文
共 62 条
[1]   BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING [J].
Adcock, Ben ;
Hansen, Anders C. ;
Poon, Clarice ;
Roman, Bogdan .
FORUM OF MATHEMATICS SIGMA, 2017, 5 :1-84
[2]   Hamiltonian cycle art: Surface covering wire sculptures and duotone surfaces [J].
Akleman, Ergun ;
Xing, Qing ;
Garigipati, Pradeep ;
Taubin, Gabriel ;
Chen, Jianer ;
Hu, Shiyu .
COMPUTERS & GRAPHICS-UK, 2013, 37 (05) :316-332
[3]  
[Anonymous], GRADIENT WAVEFORM DE
[4]  
[Anonymous], 2010, ACM T GRAPHIC, DOI DOI 10.1145/1778765.1778816
[5]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[6]   Minkowski-type theorems and least-squares clustering [J].
Aurenhammer, F ;
Hoffmann, F ;
Aronov, B .
ALGORITHMICA, 1998, 20 (01) :61-76
[7]   POWER DIAGRAMS - PROPERTIES, ALGORITHMS AND APPLICATIONS [J].
AURENHAMMER, F .
SIAM JOURNAL ON COMPUTING, 1987, 16 (01) :78-96
[8]  
AURENHAMMER F, 1991, COMPUT SURV, V23, P345, DOI 10.1145/116873.116880
[9]   Capacity-Constrained Point Distributions: A Variant of Lloyd's Method [J].
Balzer, Michael ;
Schloemer, Thomas ;
Deussen, Oliver .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03)
[10]   On the Generation of Sampling Schemes for Magnetic Resonance Imaging [J].
Boyer, Claire ;
Chauffert, Nicolas ;
Ciuciu, Philippe ;
Kahn, Jonas ;
Weiss, Pierre .
SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04) :2039-2072