QCD chiral transition, U(1)A symmetry and the dirac spectrum using domain wall fermions

被引:85
作者
Buchoff, Michael I. [1 ,2 ]
Cheng, Michael [3 ]
Christ, Norman H. [4 ]
Ding, H. -T. [4 ,5 ]
Jung, Chulwoo [5 ]
Karsch, F. [5 ,6 ]
Lin, Zhongjie [4 ]
Mawhinney, R. D. [4 ]
Mukherjee, Swagato [5 ]
Petreczky, P. [5 ]
Renfrew, Dwight [4 ]
Schroeder, Chris [1 ]
Vranas, P. M. [1 ]
Yin, Hantao [4 ]
机构
[1] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA
[2] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
[3] Boston Univ, Ctr Computat Sci, Boston, MA 02215 USA
[4] Columbia Univ, Dept Phys, New York, NY 10027 USA
[5] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA
[6] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 05期
关键词
PHASE-TRANSITION; INSTANTONS; THERMODYNAMICS;
D O I
10.1103/PhysRevD.89.054514
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: 24(3) x 8 and 32(3) x 8, where the larger volume varies in linear size between 5.6 fm (at T = 13(9) MeV) and 4.0 fm (at T = 195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, 163 x 8 volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the SU(2)(L) x SU(2)(R) and U(1)(A) symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudocritical temperature, T-c, of approximately 165 MeV consistent with previous results and strong finite-volume dependence below T-c. Clear evidence is seen for U(1)(A) symmetry breaking above T-c which is quantitatively explained by the measured density of near-zero modes in accordance with the dilute instanton gas approximation.
引用
收藏
页数:23
相关论文
共 37 条
[1]   Chiral symmetry restoration, the eigenvalue density of the Dirac operator, and the axial U(1) anomaly at finite temperature [J].
Aoki, Sinya ;
Fukaya, Hidenori ;
Taniguchi, Yusuke .
PHYSICAL REVIEW D, 2012, 86 (11)
[2]   Continuum limit physics from 2+1 flavor domain wall QCD [J].
Aoki, Y. ;
Arthur, R. ;
Blum, T. ;
Boyle, P. A. ;
Broemmel, D. ;
Christ, N. H. ;
Dawson, C. ;
Flynn, J. M. ;
Izubuchi, T. ;
Jin, X-Y. ;
Jung, C. ;
Kelly, C. ;
Li, M. ;
Lichtl, A. ;
Lightman, M. ;
Lin, M. F. ;
Mawhinney, R. D. ;
Maynard, C. M. ;
Ohta, S. ;
Pendleton, B. J. ;
Sachrajda, C. T. ;
Scholz, E. E. ;
Soni, A. ;
Wennekers, J. ;
Zanotti, J. M. ;
Zhou, R. .
PHYSICAL REVIEW D, 2011, 83 (07)
[3]   CHIRAL SYMMETRY-BREAKING IN CONFINING THEORIES [J].
BANKS, T ;
CASHER, A .
NUCLEAR PHYSICS B, 1980, 169 (1-2) :103-125
[4]   Chiral transition and U(1)A symmetry restoration from lattice QCD using domain wall fermions [J].
Bazavov, A. ;
Bhattacharya, Tanmoy ;
Buchoff, Michael I. ;
Cheng, Michael ;
Christ, N. H. ;
Ding, H. -T. ;
Gupta, Rajan ;
Hegde, Prasad ;
Jung, Chulwoo ;
Karsch, F. ;
Lin, Zhongjie ;
Mawhinney, R. D. ;
Mukherjee, Swagato ;
Petreczky, P. ;
Soltz, R. A. ;
Vranas, P. M. ;
Yin, Hantao .
PHYSICAL REVIEW D, 2012, 86 (09)
[5]   Chiral and deconfinement aspects of the QCD transition [J].
Bazavov, A. ;
Bhattacharya, T. ;
Cheng, M. ;
DeTar, C. ;
Ding, H-T. ;
Gottlieb, Steven ;
Gupta, R. ;
Hegde, P. ;
Heller, U. M. ;
Karsch, F. ;
Laermann, E. ;
Levkova, L. ;
Mukherjee, S. ;
Petreczky, P. ;
Schmidt, C. ;
Soltz, R. A. ;
Soeldner, W. ;
Sugar, R. ;
Toussaint, D. ;
Unger, W. ;
Vranas, P. .
PHYSICAL REVIEW D, 2012, 85 (05)
[6]   Quenched lattice QCD with domain wall fermions and the chiral limit [J].
Blum, T ;
Chen, P ;
Christ, N ;
Cristian, C ;
Dawson, C ;
Fleming, G ;
Kaehler, A ;
Liao, X ;
Liu, G ;
Malureanu, C ;
Mawhinney, R ;
Ohta, S ;
Siegert, G ;
Soni, A ;
Sui, C ;
Vranas, P ;
Wingate, M ;
Wu, L ;
Zhestkov, Y .
PHYSICAL REVIEW D, 2004, 69 (07) :39
[7]   QCD thermodynamics with dynamical overlap fermions [J].
Borsanyi, Szabolcs ;
Delgado, Ydalia ;
Duerr, Stephan ;
Fodor, Zoltan ;
Katz, Sandor D. ;
Krieg, Stefan ;
Lippert, Thomas ;
Nogradi, Daniel ;
Szabo, Kalman K. .
PHYSICS LETTERS B, 2012, 713 (03) :342-346
[8]   On the scaling behavior of the chiral phase transition in QCD in finite and infinite volume [J].
Braun, Jens ;
Klein, Bertram ;
Piasecki, Piotr .
EUROPEAN PHYSICAL JOURNAL C, 2011, 71 (03)
[9]   MASSLESS EXCITATIONS IN PSEUDOPARTICLE FIELDS [J].
BROWN, LS ;
CARLITZ, RD ;
LEE, C .
PHYSICAL REVIEW D, 1977, 16 (02) :417-422
[10]  
Butti A, 2003, J HIGH ENERGY PHYS