Regulation of the Cyanobacterial Circadian Clock by Electrochemically Controlled Extracellular Electron Transfer

被引:31
作者
Lu, Yue [1 ]
Nishio, Koichi [1 ]
Matsuda, Shoichi [1 ]
Toshima, Yuki [1 ]
Ito, Hiroshi [2 ]
Konno, Tomohiro [3 ]
Ishihara, Kazuhiko [3 ,4 ]
Kato, Souichiro [5 ,6 ]
Hashimoto, Kazuhito [1 ]
Nakanishi, Shuji [1 ]
机构
[1] Univ Tokyo, Dept Appl Chem, Bunkyo Ku, Tokyo 1138656, Japan
[2] Kyushu Univ, Fac Design, Fukuoka 812, Japan
[3] Univ Tokyo, Sch Engn, Dept Bioengn, Tokyo 1138656, Japan
[4] Univ Tokyo, Sch Engn, Dept Mat Engn, Tokyo 1138656, Japan
[5] Hokkaido Univ, Grad Sch Agr, Div Appl Biosci, Sapporo, Hokkaido 060, Japan
[6] Natl Inst Adv Ind Sci & Technol, Bioprod Res Inst, Tsukuba, Ibaraki, Japan
关键词
circadian clock; cyanobacteria; electrochemistry; electron transfer; KAIC PHOSPHORYLATION;
D O I
10.1002/anie.201309560
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is growing awareness that circadian clocks are closely related to the intracellular redox state across a range of species. As the redox state is determined by the exchange of the redox species, electrochemically controlled extracellular electron transfer (EC-EET), a process in which intracellular electrons are exchanged with extracellular electrodes, is a promising approach for the external regulation of circadian clocks. Herein, we discuss whether the circadian clock can be regulated by EC-EET using the cyanobacterium Synechococcus elongatus PCC7942 as a model system. Invivo monitoring of chlorophyll fluorescence revealed that the redox state of the plastoquionone pool could be controlled with EC-EET by simply changing the electrode potential. As a result, the endogenous circadian clock of S. elongatus cells was successfully entrained through periodically modulated EC-EET by emulating the natural light/dark cycle, even under constant illumination conditions. This is the first example of regulating the biological clock by electrochemistry.
引用
收藏
页码:2208 / 2211
页数:4
相关论文
共 17 条
[1]   Circadian Time Redoxed [J].
Belle, Mino D. C. ;
Piggins, Hugh D. .
SCIENCE, 2012, 337 (6096) :805-806
[2]   Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation [J].
Campbell, D ;
Hurry, V ;
Clarke, AK ;
Gustafsson, P ;
Öquist, G .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (03) :667-+
[3]   Molecular bases for circadian clocks [J].
Dunlap, JC .
CELL, 1999, 96 (02) :271-290
[4]   Peroxiredoxins are conserved markers of circadian rhythms [J].
Edgar, Rachel S. ;
Green, Edward W. ;
Zhao, Yuwei ;
van Ooijen, Gerben ;
Olmedo, Maria ;
Qin, Ximing ;
Xu, Yao ;
Pan, Min ;
Valekunja, Utham K. ;
Feeney, Kevin A. ;
Maywood, Elizabeth S. ;
Hastings, Michael H. ;
Baliga, Nitin S. ;
Merrow, Martha ;
Millar, Andrew J. ;
Johnson, Carl H. ;
Kyriacou, Charalambos P. ;
O'Neill, John S. ;
Reddy, Akhilesh B. .
NATURE, 2012, 485 (7399) :459-U65
[5]   Extracellular electron transfer [J].
Hernandez, ME ;
Newman, DK .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (11) :1562-1571
[6]  
Ishihara K, 1998, J BIOMED MATER RES, V39, P323, DOI 10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO
[7]  
2-C
[8]   Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria [J].
Ishiura, M ;
Kutsuna, S ;
Aoki, S ;
Iwasaki, H ;
Andersson, CR ;
Tanabe, A ;
Golden, SS ;
Johnson, CH ;
Kondo, T .
SCIENCE, 1998, 281 (5382) :1519-1523
[9]   Microbial circadian oscillatory systems in Neurospora and Synechococcus:: models for cellular clocks [J].
Iwasaki, H ;
Dunlap, JC .
CURRENT OPINION IN MICROBIOLOGY, 2000, 3 (02) :189-196
[10]   Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator [J].
Kim, Yong-Ick ;
Vinyard, David J. ;
Ananyev, Gennady M. ;
Dismukes, G. Charles ;
Golden, Susan S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (44) :17765-17769