One step generation of customizable gRNA vectors for multiplex CRISPR approaches through string assembly gRNA cloning (STAgR)

被引:31
作者
Breunig, Christopher T. [1 ,2 ]
Durovic, Tamara [3 ,4 ]
Neuner, Andrea M. [1 ]
Baumann, Valentin [1 ,3 ]
Wiesbeck, Maximilian F. [1 ]
Koeferle, Anna [1 ]
Goetz, Magdalena [5 ,6 ]
Ninkovic, Jovica [4 ,6 ]
Stricker, Stefan H. [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Munich Ctr Neurosci, MCN Jr Res Grp, BioMed Ctr, Planegg Martinsried, Germany
[2] Helmholtz Zentrum, German Res Ctr Environm Hlth, Inst Stem Cell Res, Epigenet Engn, Planegg Martinsried, Germany
[3] Ludwig Maximilians Univ Munchen, Grad Sch System Neurosci, Munich, Germany
[4] Helmholtz Zentrum, German Res Ctr Environm Hlth, Inst Stem Cell Res, Neurogenesis & Regenerat, Neuherberg, Germany
[5] Helmholtz Zentrum, German Res Ctr Environm Hlth, Inst Stem Cell Res, Neural Stem cells, Neuherberg, Germany
[6] Ludwig Maximilians Univ Munchen, BioMed Ctr, Physiol Genom, Planegg Martinsried, Germany
关键词
GENOME; SYSTEM; GENES; CELLS;
D O I
10.1371/journal.pone.0196015
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Novel applications based on the bacterial CRISPR system make genetic, genomic, transcriptional and epigenomic engineering widely accessible for the first time. A significant advantage of CRISPR over previous methods is its tremendous adaptability due to its bipartite nature. Cas9 or its engineered variants define the molecular effect, while short gRNAs determine the targeting sites. A majority of CRISPR approaches depend on the simultaneous delivery of multiple gRNAs into single cells, either as an essential precondition, to increase responsive cell populations or to enhance phenotypic outcomes. Despite these requirements, methods allowing the efficient generation and delivery of multiple gRNA expression units into single cells are still sparse. Here we present STAgR (String assembly gRNA cloning), a single step gRNA multiplexing system, that obtains its advantages by employing the N20 targeting sequences as necessary homologies for Gibson assembly. We show that STAgR allows reliable and cost-effective generation of vectors with high numbers of gRNAs enabling multiplexed CRISPR approaches. Moreover, STAgR is easily customizable, as vector backbones as well as gRNA structures, numbers and promoters can be freely chosen and combined. Finally, we demonstrate STAgR's widespread functionality, its efficiency in multi-targeting approaches, using it for both, genome and transcriptome editing, as well as applying it in vitro and in vivo.
引用
收藏
页数:12
相关论文
共 34 条
[1]   Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation [J].
Balboa, Diego ;
Weltner, Jere ;
Eurola, Solja ;
Trokovic, Ras ;
Wartiovaara, Kirmo ;
Otonkoski, Timo .
STEM CELL REPORTS, 2015, 5 (03) :448-459
[2]   Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon [J].
Barbosa, Joana S. ;
Di Giaimo, Rossella ;
Goetz, Magdalena ;
Ninkovic, Jovica .
NATURE PROTOCOLS, 2016, 11 (08) :1360-1370
[3]   Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain [J].
Barbosa, Joana S. ;
Sanchez-Gonzalez, Rosario ;
Di Giaimo, Rossella ;
Baumgart, Emily Violette ;
Theis, Fabian J. ;
Goetz, Magdalena ;
Ninkovic, Jovica .
SCIENCE, 2015, 348 (6236) :789-793
[4]   Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells [J].
Black, Joshua B. ;
Adler, Andrew F. ;
Wang, Hong-Gang ;
D'Ippolito, Anthony M. ;
Hutchinson, Hunter A. ;
Reddy, Timothy E. ;
Pitt, Geoffrey S. ;
Leong, Kam W. ;
Gersbach, Charles A. .
CELL STEM CELL, 2016, 19 (03) :406-414
[5]   A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification [J].
Chakraborty, Syandan ;
Ji, HaYeun ;
Kabadi, Ami M. ;
Gersbach, Charles A. ;
Christoforou, Nicolas ;
Leong, Kam W. .
STEM CELL REPORTS, 2014, 3 (06) :940-947
[6]  
Chavez A, 2015, NAT METHODS, V12, P326, DOI [10.1038/NMETH.3312, 10.1038/nmeth.3312]
[7]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[8]   Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae [J].
Ferreira, Raphael ;
Skrekas, Christos ;
Nielsen, Jens ;
David, Florian .
ACS SYNTHETIC BIOLOGY, 2018, 7 (01) :10-15
[9]  
Gibson DG, 2009, NAT METHODS, V6, P343, DOI [10.1038/nmeth.1318, 10.1038/NMETH.1318]
[10]   Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers [J].
Hilton, Isaac B. ;
D'Ippolito, Anthony M. ;
Vockley, Christopher M. ;
Thakore, Pratiksha I. ;
Crawford, Gregory E. ;
Reddy, Timothy E. ;
Gersbach, Charles A. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :510-U225