In this work, we introduce a chitosan-Pt complex (CS-Pt) as an effective template for catalytic Pt sensitization and creation of abundant mesopores in SnO2 nanofibers (NFs). The Pt particles encapsulated by the CS exhibit ultrasmall size (approximate to 2.6 nm) and high dispersion characteristics due to repulsion between CS molecules. By combining CS-Pt with electrospinning, mesoporous SnO2 NFs uniformly functionalized with the Pt catalyst (CS-Pt@SnO2 NFs) are synthesized. Particularly, numerous mesopores with diameters of approximate to 20 nm form through the decomposition of CS, while a small SnO2 grain size (14.32 nm) is achieved by the pinning effect of CS. It is observed that CS-Pt@SnO2 NFs exhibit outstanding response (R-air/R-gas = 141.92 at 5 ppm), excellent selectivity, stability, and fast response (12 s)/recovery (44 s) speed toward 1 ppm of acetone at 350 degrees C and high humidity (90% RH). In addition, by applying an exponential fitting tool to experimental response values toward 0.1-5 ppm of acetone, it is estimated that CS-Pt@SnO2 NFs can detect 5 ppb of acetone with a notable response (R-air/R-gas = 2.9). Furthermore, the sensor array based on CS-Pt@SnO2 NFs, CS-driven SnO2 NFs, polyol-Pt loaded SnO2 NFs, and dense SnO2 NFs obviously classifies simulated diabetic breath and healthy human breath by using a pattern recognition tool. These results clearly demonstrate that mesoporous SnO2 NFs, particularly functionalized with CS-Pt templated nanocatalysts, open up a new class of sensing layers offering high sensitivity and selectivity.