Transcriptional regulation of drought response: a tortuous network of transcriptional factors

被引:295
作者
Singh, Dhriti [1 ]
Laxmi, Ashverya [1 ]
机构
[1] Natl Inst Plant Genome Res, New Delhi, India
来源
FRONTIERS IN PLANT SCIENCE | 2015年 / 6卷
关键词
ABA; drought; regulons; cross-talk; transcription factors; CIS-ACTING ELEMENTS; ARABIDOPSIS MUTANT DEFICIENT; ABIOTIC STRESS RESPONSES; ABSCISIC-ACID ABA; OSMOTIC-STRESS; GENE-EXPRESSION; PROTEIN-KINASES; LOW-TEMPERATURE; PLANT DROUGHT; WATER-STRESS;
D O I
10.3389/fpls.2015.00895
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other.
引用
收藏
页数:11
相关论文
共 95 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression [J].
Abe, H ;
YamaguchiShinozaki, K ;
Urao, T ;
Iwasaki, T ;
Hosokawa, D ;
Shinozaki, K .
PLANT CELL, 1997, 9 (10) :1859-1868
[3]   THE 5'-REGION OF ARABIDOPSIS-THALIANA COR15A HAS CIS-ACTING ELEMENTS THAT CONFER COLD-REGULATED, DROUGHT-REGULATED AND ABA-REGULATED GENE-EXPRESSION [J].
BAKER, SS ;
WILHELM, KS ;
THOMASHOW, MF .
PLANT MOLECULAR BIOLOGY, 1994, 24 (05) :701-713
[4]   WRKY transcription factors Jack of many trades in plants [J].
Bakshi, Madhunita ;
Oelmueller, Ralf .
PLANT SIGNALING & BEHAVIOR, 2014, 9 (02)
[5]   Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms [J].
Baldoni, Elena ;
Genga, Annamaria ;
Cominelli, Eleonora .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (07) :15811-15851
[6]  
Banerjee Aditya, 2015, ScientificWorldJournal, V2015, P807560, DOI 10.1155/2015/807560
[7]   The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis [J].
Bensmihen, S ;
Rippa, S ;
Lambert, G ;
Jublot, D ;
Pautot, V ;
Granier, F ;
Giraudat, J ;
Parcy, F .
PLANT CELL, 2002, 14 (06) :1391-1403
[8]   Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid [J].
Boudsocq, Marie ;
Droillard, Marie-Jo ;
Barbier-Brygoo, Helene ;
Lauriere, Christiane .
PLANT MOLECULAR BIOLOGY, 2007, 63 (04) :491-503
[9]  
Bray E.A., 2000, AM SOC PLANT PHYSIOL, P1158, DOI DOI 10.1007/S11104-007-9430-2
[10]   Genes commonly regulated by water-deficit stress in Arabidopsis thaliana [J].
Bray, EA .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (407) :2331-2341