THE MOMENTUM MAP IN POISSON GEOMETRY

被引:26
作者
Fernandes, Rui Loja [1 ]
Ortega, Juan-Pablo [2 ]
Ratiu, Tudor S. [3 ,4 ]
机构
[1] Inst Super Tecn, Dept Math, P-1049001 Lisbon, Portugal
[2] Univ Franche Comte, CNRS, F-25030 Besancon, France
[3] Ecole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Bernoulli Ctr, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
SYMPLECTIC GROUPOIDS; LIE ALGEBROIDS; CONVEXITY; REDUCTION; BRACKETS; SPACES; INTEGRABILITY;
D O I
10.1353/ajm.0.0068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every action on a Poisson manifold by Poisson diffeomorphisms lifts to a Hamiltonian action on its symplectic groupoid which has a canonically defined momentum map. We study various properties of this momentum map as well as its use in reduction.
引用
收藏
页码:1261 / 1310
页数:50
相关论文
共 37 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[3]  
[Anonymous], PUBLICATIONS DEP MAT
[4]  
ARMS JM, 1991, MATH SCI R, V22, P33
[5]   Integration of twisted Dirac brackets [J].
Bursztyn, H ;
Crainic, M ;
Weinstein, A ;
Zhu, CC .
DUKE MATHEMATICAL JOURNAL, 2004, 123 (03) :549-607
[6]  
Cattaneo AS, 2001, PROG MATH, V198, P61
[7]  
CONDEVAUX M, 1998, PUBL DEP MATH NOUV B, V88, P131
[8]  
Crainic M, 2004, J DIFFER GEOM, V66, P71
[9]   Differentiable and algebroid cohomology, Van Est isomorphisms, and characteristic classes [J].
Crainic, M .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :681-721
[10]   Integrability of Lie brackets [J].
Crainic, M ;
Fernandes, RL .
ANNALS OF MATHEMATICS, 2003, 157 (02) :575-620