More Than a Light Switch: Engineering Unconventional Fluorescent Configurations for Biological Sensing

被引:33
作者
Peveler, William J. [1 ,2 ]
Algar, W. Russ [1 ]
机构
[1] Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
[2] Univ Glasgow, Sch Engn, Div Biomed Engn, Glasgow G12 8LT, Lanark, Scotland
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
RESONANCE ENERGY-TRANSFER; QUANTUM-DOT PHOTOLUMINESCENCE; LUMINESCENT GOLD NANOCLUSTERS; AGGREGATION-INDUCED EMISSION; UP-CONVERSION NANOPARTICLES; MOLECULAR LOGIC GATES; SENSOR ARRAY; CHARGE-TRANSFER; TURN-ON; DNA;
D O I
10.1021/acschembio.7b01022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence is a powerful and sensitive tool in biological detection, used widely for cellular imaging and in vitro molecular diagnostics. Over time, three prominent conventions have emerged in the design of fluorescent biosensors: a sensor is ideally specific for its target, only one fluorescence signal turns on or off in response to the target, and each target requires its own sensor and signal combination. These are conventions but not requirements, and sensors that break with one or more of these conventions can offer new capabilities and advantages. Here, we review "unconventional" fluorescent sensor configurations based on fluorescent dyes, proteins, and nanomaterials such as quantum dots and metal nanoclusters. These configurations include multifluorophore Forster resonance energy transfer (FRET) networks, temporal multiplexing, photonic logic, and cross-reactive arrays or "noses". The more complex but carefully engineered biorecognition and fluorescence signaling modalities in unconventional designs are richer in information, afford greater multiplexing capacity, and are potentially better suited to the analysis of complex biological samples, interactions, processes, and diseases. We conclude with a short perspective on the future of unconventional fluorescent sensors and encourage researchers to imagine sensing beyond the metaphorical light bulb and light switch combination.
引用
收藏
页码:1752 / 1766
页数:15
相关论文
共 143 条
[1]   Distance Dependence of Single-Fluorophore Quenching by Gold Nanoparticles Studied on DNA Origami [J].
Acuna, Guillermo P. ;
Bucher, Martina ;
Stein, Ingo H. ;
Steinhauer, Christian ;
Kuzyk, Anton ;
Holzmeister, Phil ;
Schreiber, Robert ;
Moroz, Alexander ;
Stefani, Fernando D. ;
Liedl, Tim ;
Simmel, Friedrich C. ;
Tinnefeld, Philip .
ACS NANO, 2012, 6 (04) :3189-3195
[2]   Tools for Studying Glycans: Recent Advances in Chemoenzymatic Glycan Labeling [J].
Aguilar, Aime Lopez ;
Briard, Jennie Grace ;
Yang, Linette ;
Ovryn, Ben ;
Macauley, Matthew Scott ;
Wu, Peng .
ACS CHEMICAL BIOLOGY, 2017, 12 (03) :611-621
[3]   Cross-reactive chemical sensor arrays [J].
Albert, KJ ;
Lewis, NS ;
Schauer, CL ;
Sotzing, GA ;
Stitzel, SE ;
Vaid, TP ;
Walt, DR .
CHEMICAL REVIEWS, 2000, 100 (07) :2595-2626
[4]   Quenching of Quantum Dot Emission by Fluorescent Gold Clusters: What It Does and Does Not Share with the Forster Formalism [J].
Aldeek, Fadi ;
Ji, Xin ;
Mattoussi, Hedi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (29) :15429-15437
[5]   Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Forster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality [J].
Algar, W. Russ ;
Khachatrian, Ani ;
Melinger, Joseph S. ;
Huston, Alan L. ;
Stewart, Michael H. ;
Susumu, Kimihiro ;
Blanco-Canosa, Juan B. ;
Oh, Eunkeu ;
Dawson, Philip E. ;
Medintz, Igor L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) :363-372
[6]   Quantum dots as platforms for charge transfer-based biosensing: challenges and opportunities [J].
Algar, W. Russ ;
Stewart, Michael H. ;
Scott, Amy M. ;
Moon, Woohyun J. ;
Medintz, Igor L. .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (45) :7816-7827
[7]   Assembly of a Concentric Forster Resonance Energy Transfer Relay on a Quantum Dot Scaffold: Characterization and Application to Multiplexed Protease Sensing [J].
Algar, W. Russ ;
Ancona, Mario G. ;
Malanoski, Anthony P. ;
Susumu, Kimihiro ;
Medintz, Igor L. .
ACS NANO, 2012, 6 (12) :11044-11058
[8]   Multiplexed Tracking of Protease Activity Using a Single Color of Quantum Dot Vector and a Time-Gated Forster Resonance Energy Transfer Relay [J].
Algar, W. Russ ;
Malanoski, Anthony P. ;
Susumu, Kimihiro ;
Stewart, Michael H. ;
Hildebrandt, Niko ;
Medintz, Igor L. .
ANALYTICAL CHEMISTRY, 2012, 84 (22) :10136-10146
[9]   Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Forster Resonance Energy Transfer Relays: Characterization and Biosensing [J].
Algar, W. Russ ;
Wegner, David ;
Huston, Alan L. ;
Blanco-Canosa, Juan B. ;
Stewart, Michael H. ;
Armstrong, Anika ;
Dawson, Philip E. ;
Hildebrandt, Niko ;
Medintz, Igor L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (03) :1876-1891
[10]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937