Application of Artificial Neural Network to quantitative analysis of Raman spectrum

被引:0
|
作者
Chen, Chen [1 ]
Zhang, Guoping [1 ]
Li, Gang [1 ]
机构
[1] Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
来源
FOURTH INTERNATIONAL CONFERENCE ON PHOTONICS AND IMAGING IN BIOLOGY AND MEDICINE, PTS 1 AND 2 | 2006年 / 6047卷
关键词
Artificial Neural Network; Back-Propagation algorithm; Raman spectrum; multi-component analysis; azo-dyes; Sudan; 1; Sudan III;
D O I
10.1117/12.710127
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
By means of Artificial Neural Network and Back-Propagation algorithm, the multi-component of azo-dyes can be qualitatively and quantitatively analyzed simultaneously, though their Raman spectra arc overlapped. This article designed a Back-Propagation algorithm network to analyze the multi-component of azo-dyes (Sudan I and Sudan III). In conclusion, by using the Artificial Neural Network and Raman spectrum can be a good choice for resolving multi-component.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Method in analysis of CdZnTe γ spectrum with artificial neural network
    Ai, Xian-Yun
    Wei, Yi-Xiang
    Xiao, Wu-Yun
    Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2005, 25 (06): : 626 - 629
  • [2] APPLICATION OF AN ARTIFICIAL NEURAL NETWORK FOR THE QUANTITATIVE CLASSIFICATION OF TROCHLEAR DYSPLASIA
    Cho, Kyungjin
    Mueller, Jacobus H.
    Scheffer, Cornie
    Erasmus, Pieter J.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2013, 13 (04)
  • [4] Quantitative analysis of glucose in whole blood using FT-Raman spectroscopy and artificial neural network
    Wang, Qiaoyun
    Zheng, Nianzu
    Li, Zhigang
    Ma, Zhenhe
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, 2015, 17 : 471 - 475
  • [5] RamanNet: a generalized neural network architecture for Raman spectrum analysis
    Nabil Ibtehaz
    Muhammad E. H. Chowdhury
    Amith Khandakar
    Serkan Kiranyaz
    M. Sohel Rahman
    Susu M. Zughaier
    Neural Computing and Applications, 2023, 35 : 18719 - 18735
  • [6] RamanNet: a generalized neural network architecture for Raman spectrum analysis
    Ibtehaz, Nabil
    Chowdhury, Muhammad E. H.
    Khandakar, Amith
    Kiranyaz, Serkan
    Rahman, M. Sohel
    Zughaier, Susu M.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (25): : 18719 - 18735
  • [7] An Application of Principal Component Analysis - Artificial Neural Network for the Simultaneous Quantitative Analysis of a Binary Mixture System
    Dinc, Erdal
    Sen Koktas, Nigar
    Baleanu, Dumitru
    REVISTA DE CHIMIE, 2009, 60 (07): : 662 - 665
  • [8] Artificial neural network for the quantitative analysis of air toxic VOCs
    Li, Y
    Wang, J
    Chen, ZR
    Zhou, XT
    ANALYTICAL LETTERS, 2001, 34 (12) : 2203 - 2219
  • [9] Paraconsistent artificial neural network:: An application in cephalometric analysis
    Abe, JM
    Ortega, NRS
    Mário, MC
    Del Santo, M
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2005, 3682 : 716 - 723
  • [10] Application of artificial neural network to fMRI regression analysis
    Misaki, M
    Miyauchi, S
    NEUROIMAGE, 2006, 29 (02) : 396 - 408