Enhanced radio-frequency performance of niobium films on copper substrates deposited by high power impulse magnetron sputtering

被引:14
作者
Arzeo, M. [1 ,2 ]
Avino, F. [1 ,3 ]
Pfeiffer, S. [1 ]
Rosaz, G. [1 ]
Taborelli, M. [1 ]
Vega-Cid, L. [1 ]
Venturini-Delsolaro, W. [1 ]
机构
[1] European Org Nucl Res, CERN, CH-1211 Geneva 23, Switzerland
[2] SeeQC EU Srl, Via Due Macell 66, I-00187 Rome, Italy
[3] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, Lausanne, Switzerland
关键词
HiPIMS; SRF cavities; Nb thin film; Superconducting surface resistance; Q-slope issue;
D O I
10.1088/1361-6668/ac5646
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a study of radio frequency properties of niobium films deposited on copper by two different approaches based on High Power Impulse Magnetron Sputtering, namely with a DC voltage biased substrate and with bipolar target voltage. Such approaches enable the synthesis of dense superconducting (SC) layers. The SC radio frequency losses of these films are characterized as a function of the applied RF magnetic field using a dedicated calorimetric method. We report on a significant reduction of the Q-slope phenomenon and the residual surface resistance in the characterized films, achieving similar values as those obtained on bulk niobium surfaces qualified with the same technique. Our results pave the way towards the realization of Nb/Cu coated accelerating cavities featuring a surface resistance 2-3 times lower than the state-of-the-art values at working frequencies of 400 and 800 MHz, making this technology even more appealing for future particle accelerators and colliders.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Improved film density for coatings at grazing angle of incidence in high power impulse magnetron sputtering with positive pulse [J].
Avino, F. ;
Fonnesu, D. ;
Koettig, T. ;
Bonura, M. ;
Senatore, C. ;
Fontenla, A. T. Perez ;
Sublet, A. ;
Taborelli, M. .
THIN SOLID FILMS, 2020, 706
[2]   Evidence of ion energy distribution shift in HiPIMS plasmas with positive pulse [J].
Avino, F. ;
Sublet, A. ;
Taborelli, M. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2019, 28 (01)
[3]  
Barbalat O., 1994, CAS CERN ACCEL SCH 5, P23, DOI [10.5170/CERN-1994-001.841, DOI 10.5170/CERN-1994-001.841]
[4]  
Bauer S., 1999, P 1999 WORKSH RF SUP
[5]   Future Circular Colliders succeeding the LHC [J].
Benedikt, Michael ;
Blondel, Alain ;
Janot, Patrick ;
Mangano, Michelangelo ;
Zimmermann, Frank .
NATURE PHYSICS, 2020, 16 (04) :402-407
[6]   Study of the surface resistance of superconducting niobium films at 1.5 GHz [J].
Benvenuti, C ;
Calatroni, S ;
Campisi, IE ;
Darriulat, P ;
Peck, MA ;
Russo, R ;
Valente, AM .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1999, 316 (3-4) :153-188
[7]  
BENVENUTI C, 1991, CONFERENCE RECORD OF THE 1991 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, P1023, DOI 10.1109/PAC.1991.164525
[8]  
Benvenuti C., 1997, P SRF 97 8 WORKSH RF, P1038
[9]  
Boussard D., 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366), P946, DOI 10.1109/PAC.1999.795409
[10]   The ESS Spoke Cavity Cryomodules [J].
Bousson, Sebastien ;
Darve, Christine ;
Duthil, Patxi ;
Elias, Nuno ;
Molloy, Steve ;
Reynet, Denis ;
Thermeau, Jean-Pierre .
ADVANCES IN CRYOGENIC ENGINEERING, 2014, 1573 :665-672