Quantum data processing and error correction

被引:518
作者
Schumacher, B
Nielsen, MA
机构
[1] LOS ALAMOS NATL LAB, LOS ALAMOS, NM 87545 USA
[2] KENYON COLL, DEPT PHYS, GAMBIER, OH 43022 USA
来源
PHYSICAL REVIEW A | 1996年 / 54卷 / 04期
关键词
D O I
10.1103/PhysRevA.54.2629
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper investigates properties of noisy quantum information channels. We define a quantity called coherent information, which measures the amount of quantum information conveyed in the noisy channel. This quantity can never be increased by quantum information processing, and it yields a simple necessary and sufficient condition for the existence of perfect quantum error correction.
引用
收藏
页码:2629 / 2635
页数:7
相关论文
共 18 条
[1]  
BARNUM H, COMMUNICATION
[2]  
CALDERBANK AR, UNPUB
[3]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[4]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[5]   OPERATIONS AND MEASUREMENTS .2. [J].
HELLWIG, KE ;
KRAUS, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 16 (02) :142-&
[6]   FIDELITY FOR MIXED QUANTUM STATES [J].
JOZSA, R .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2315-2323
[7]   A NEW PROOF OF THE QUANTUM NOISELESS CODING THEOREM [J].
JOZSA, R ;
SCHUMACHER, B .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2343-2349
[8]  
KNILL E, UNPUB
[9]   GENERAL STATE CHANGES IN QUANTUM THEORY [J].
KRAUS, K .
ANNALS OF PHYSICS, 1971, 64 (02) :311-&
[10]  
Kraus K., 1983, STATES EFFECTS OPERA