Existence of a solution to an equation arising from the theory of Mean Field Games

被引:61
作者
Gangbo, Wilfrid [1 ]
Swiech, Andrzej [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
NASH; PRINCIPLE; SYSTEMS;
D O I
10.1016/j.jde.2015.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a small time strong solution to a nonlocal Hamilton Jacobi equation (1.1) introduced in [481, the so-called master equation, originating from the theory of Mean Field Games. We discover a link between metric viscosity solutions to local Hamilton Jacobi equations studied in [2,19,20] and solutions to (1. 1). As a consequence we recover the existence of solutions to the First Order Mean Field Games equations (1.2), first proved in 148], and make a more rigorous connection between the master equation (1.1) and the Mean Field Games equations (1.2). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:6573 / 6643
页数:71
相关论文
共 52 条
  • [1] Transport equation and Cauchy problem for BV vector fields
    Ambrosio, L
    [J]. INVENTIONES MATHEMATICAE, 2004, 158 (02) : 227 - 260
  • [2] Ambrosio L., 2005, Gradient Flows: in Metric Spaces and in the Space of Probability Measures
  • [3] Hamiltonian ODEs in the wasserstein space of probability measures
    Ambrosio, Luigi
    Gangbo, Wilfred
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (01) : 18 - 53
  • [4] On a class of first order Hamilton-Jacobi equations in metric spaces
    Ambrosio, Luigi
    Feng, Jin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) : 2194 - 2245
  • [5] [Anonymous], [No title captured]
  • [6] Aumann R. J., 1974, The Shapley value
  • [7] MARKETS WITH A CONTINUUM OF TRADERS
    AUMANN, RJ
    [J]. ECONOMETRICA, 1964, 32 (1-2) : 39 - 50
  • [8] Balandat M, 2013, P AMER CONTR CONF, P2527
  • [9] Bensoussan A, 2013, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-1-4614-8508-7
  • [10] The Master equation in mean field theory
    Bensoussan, Alain
    Frehse, Jens
    Yam, Sheung Chi Phillip
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (06): : 1441 - 1474