Existence of a solution to an equation arising from the theory of Mean Field Games

被引:64
作者
Gangbo, Wilfrid [1 ]
Swiech, Andrzej [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
NASH; PRINCIPLE; SYSTEMS;
D O I
10.1016/j.jde.2015.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a small time strong solution to a nonlocal Hamilton Jacobi equation (1.1) introduced in [481, the so-called master equation, originating from the theory of Mean Field Games. We discover a link between metric viscosity solutions to local Hamilton Jacobi equations studied in [2,19,20] and solutions to (1. 1). As a consequence we recover the existence of solutions to the First Order Mean Field Games equations (1.2), first proved in 148], and make a more rigorous connection between the master equation (1.1) and the Mean Field Games equations (1.2). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:6573 / 6643
页数:71
相关论文
共 52 条
[1]   Transport equation and Cauchy problem for BV vector fields [J].
Ambrosio, L .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :227-260
[2]  
Ambrosio L., 2005, Gradient Flows: in Metric Spaces and in the Space of Probability Measures
[3]   Hamiltonian ODEs in the wasserstein space of probability measures [J].
Ambrosio, Luigi ;
Gangbo, Wilfred .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (01) :18-53
[4]   On a class of first order Hamilton-Jacobi equations in metric spaces [J].
Ambrosio, Luigi ;
Feng, Jin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2194-2245
[5]  
[Anonymous], [No title captured]
[6]  
Aumann R. J., 1974, The Shapley value
[7]   MARKETS WITH A CONTINUUM OF TRADERS [J].
AUMANN, RJ .
ECONOMETRICA, 1964, 32 (1-2) :39-50
[8]  
Balandat M, 2013, P AMER CONTR CONF, P2527
[9]  
Bensoussan A, 2013, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-1-4614-8508-7
[10]   The Master equation in mean field theory [J].
Bensoussan, Alain ;
Frehse, Jens ;
Yam, Sheung Chi Phillip .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (06) :1441-1474