Ternary thick active layer for efficient organic solar cells

被引:6
|
作者
Fu, Xiang [1 ]
Xu, Haitao [1 ,3 ]
Zhou, Dan [1 ]
Cheng, Xiaofang [2 ]
Huang, Liqiang [2 ]
Chen, Lie [2 ,3 ]
Chen, Yiwang [2 ,3 ]
机构
[1] Nanchang Hangkong Univ, Coll Mat Sci & Engn, 696 Fenghe Ave, Nanchang 330063, Jiangxi, Peoples R China
[2] Nanchang Univ, Coll Chem, 999 Xuefu Ave, Nanchang 330031, Jiangxi, Peoples R China
[3] Nanchang Univ, Jiangxi Prov Key Lab New Energy Chem, Inst Polymers, 999 Xuefu Ave, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
POWER CONVERSION EFFICIENCY; NONFULLERENE ACCEPTORS; IR SENSITIZATION; POLYMER; PERFORMANCE; GAP; OPTIMIZATION;
D O I
10.1007/s10853-018-2130-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ternary organic solar cells (OSCs) hold great promise in enabling the roll-to-roll printing of environmentally friendly, mechanically flexible, and cost-effective photovoltaic devices. Nevertheless, many ternary OSCs display the best power conversion efficiency (PCE) with a thin active layer at the thickness of about 100 nm, which can be hardly translated in to the roll-to-roll processing with high reproducibility. In this paper, the ternary OSCs with a high PCE and a thick active layer were reported, which was obtained by incorporating a dye small molecule named as 2'-(5,5'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(thiophene-5,2-diyl))bis(methanylylidene))-bis(3-ethyl-2-thioxothizolidin-4-one) (FTR)) into a PTB7-Th:PC71BM binary system. Specifically, the addition of FTR into the PTB7-Th:PC71BM binary system was found to improve the hole mobility of the active layer, which resulted in faster charge transport, more efficient charge separation, and higher PCEs even in the presence of a thick active layer. The single-junction PTB7-Th:FTR:PC71BM ternary OSCs with the active layer thickness of 160 nm presented an outstanding PCE of 9.4%, which was much higher than that 7.5% of the PTB7-Th:PC71BM binary OSCs with the active layer thickness of 160 nm. Notably, the PTB7-Th:FTR:PC71BM ternary OSCs devices exhibited excellent thickness insensitivity. In other words, the PTB7-Th:FTR:PC71BM ternary OSCs device with a thick active layer (200 nm) could still demonstrate a high PCE of over 8.2%, which was well compatible to the requirement for future roll-to-roll printing.
引用
收藏
页码:8398 / 8408
页数:11
相关论文
共 50 条
  • [1] Ternary thick active layer for efficient organic solar cells
    Xiang Fu
    Haitao Xu
    Dan Zhou
    Xiaofang Cheng
    Liqiang Huang
    Lie Chen
    Yiwang Chen
    Journal of Materials Science, 2018, 53 : 8398 - 8408
  • [2] Thick Active-Layer Organic Solar Cells
    Liu, Zesheng
    Li, Tengfei
    Lin, Yuze
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (24) : 3739 - 3750
  • [3] High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency
    Gasparini, Nicola
    Lucera, Luca
    Salvador, Michael
    Prosa, Mario
    Spyropoulos, George D.
    Kubis, Peter
    Egelhaaf, Hans-Joachim
    Brabec, Christoph J.
    Ameri, Tayebeh
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (04) : 885 - 892
  • [4] Improving the charge transport of the ternary blend active layer for efficient semitransparent organic solar cells
    Yin, Pan
    Yin, Zhigang
    Ma, Yunlong
    Zheng, Qingdong
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (12) : 5177 - 5185
  • [5] Over 18% Efficiency Ternary Organic Solar Cells with 300 nm Thick Active Layer Enabled by an Oligomeric Acceptor
    Wei, Yanan
    Cai, Yunhao
    Gu, Xiaobin
    Yao, Guo
    Fu, Zhen
    Zhu, Yuxuan
    Yang, Junfang
    Dai, Junpeng
    Zhang, Jianqi
    Zhang, Xin
    Hao, Xiaotao
    Lu, Guanghao
    Tang, Zheng
    Peng, Qian
    Zhang, Chunfeng
    Huang, Hui
    ADVANCED MATERIALS, 2024, 36 (02)
  • [6] A blade-coated highly efficient thick active layer for non-fullerene organic solar cells
    Zhang, Lin
    Zhao, Heng
    Lin, Baojun
    Yuan, Jian
    Xu, Xianbin
    Wu, Jingnan
    Zhou, Ke
    Guo, Xia
    Zhang, Maojie
    Ma, Wei
    Journal of Materials Chemistry A, 2019, 7 (39): : 22265 - 22273
  • [7] A blade-coated highly efficient thick active layer for non-fullerene organic solar cells
    Zhang, Lin
    Zhao, Heng
    Lin, Baojun
    Yuan, Jian
    Xu, Xianbin
    Wu, Jingnan
    Zhou, Ke
    Guo, Xia
    Zhang, Maojie
    Ma, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (39) : 22265 - 22273
  • [8] Stretchable organic solar cells based on ternary phase composition of active layer
    Wang, Minshuai
    Zheng, Kai
    Cai, Xiaomei
    OPTICAL MATERIALS, 2025, 159
  • [9] A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency
    Lijiao Ma
    Ye Xu
    Yunfei Zu
    Qing Liao
    Bowei Xu
    Cunbin An
    Shaoqing Zhang
    Jianhui Hou
    Science China(Chemistry) , 2020, (01) : 21 - 27
  • [10] A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency
    Ma, Lijiao
    Xu, Ye
    Zu, Yunfei
    Liao, Qing
    Xu, Bowei
    An, Cunbin
    Zhang, Shaoqing
    Hou, Jianhui
    SCIENCE CHINA-CHEMISTRY, 2020, 63 (01) : 21 - 27