Necessary conditions for the exponential stability of time-delay systems via the Lyapunov delay matrix

被引:15
作者
Egorov, A. V. [1 ]
Mondie, S. [2 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
[2] IPN, CINVESTAV, Dept Automat Control, Mexico City 07738, DF, Mexico
关键词
delay systems; stability of linear systems; Lyapunov-Krasovskii framework; necessary conditions; KRASOVSKII FUNCTIONALS;
D O I
10.1002/rnc.2962
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exponential necessary stability conditions for linear systems with multiple delays are presented. The originality of these conditions is that, in analogy with the case of delay free systems, they depend on the Lyapunov matrix function of the delay system. They are validated by examples for which the analytic characterization of the stability region is known. Copyright (C) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1760 / 1771
页数:12
相关论文
共 32 条
[1]  
Bellman R.E., 1963, Differential-Difference Equations, V6
[2]  
DATKO R., 1972, Ordinary Differential Equations, P387
[3]   New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems [J].
Fridman, E .
SYSTEMS & CONTROL LETTERS, 2001, 43 (04) :309-319
[4]  
Garcia-Lozano H., 2004, P 2 IFAC S SYST STRU, P102
[5]  
GU K., 2003, CONTROL ENGN SER BIR
[6]   Discretized LMI set in the stability problem of linear uncertain time-delay systems [J].
Gu, KQ .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (04) :923-934
[7]  
Hale J.K., 1977, THEORY FUNCTIONAL DI
[8]  
Hayes N. D., 1950, J LONDON MATH SOC, Vs1-25, P226, DOI [10.1112/jlms/s1-25.3.226, DOI 10.1112/JLMS/S1-25.3.226]
[9]  
HUANG WZ, 1989, J MATH ANAL APPL, V142, P83
[10]  
Huesca E., 2009, IFAC Proc., V42, P261