Controllability of structural brain networks

被引:555
作者
Gu, Shi [1 ,2 ]
Pasqualetti, Fabio [3 ]
Cieslak, Matthew [4 ]
Telesford, Qawi K. [2 ,5 ]
Yu, Alfred B. [5 ]
Kahn, Ari E. [2 ]
Medaglia, John D. [2 ]
Vettel, Jean M. [4 ,5 ]
Miller, Michael B. [4 ]
Grafton, Scott T. [4 ]
Bassett, Danielle S. [2 ,6 ]
机构
[1] Univ Penn, Dept Appl Math & Computat Sci, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[3] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[4] Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA
[5] Army Res Lab, Translat Neurosci Branch, Aberdeen, MD 20783 USA
[6] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
RICH-CLUB ORGANIZATION; STATE FUNCTIONAL CONNECTIVITY; RESTING-STATE; COGNITIVE CONTROL; HUMAN CONNECTOME; HUBS; ARCHITECTURE; ATTENTION;
D O I
10.1038/ncomms9414
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
引用
收藏
页数:10
相关论文
共 67 条
  • [1] Modeling the Impact of Lesions in the Human Brain
    Alstott, Jeffrey
    Breakspear, Michael
    Hagmann, Patric
    Cammoun, Leila
    Sporns, Olaf
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (06)
  • [2] [Anonymous], 1985, LINEAR MULTIVARIABLE
  • [3] [Anonymous], COMMUNICATIONS CONTR
  • [4] Learning-induced autonomy of sensorimotor systems
    Bassett, Danielle S.
    Yang, Muzhi
    Wymbs, Nicholas F.
    Grafton, Scott T.
    [J]. NATURE NEUROSCIENCE, 2015, 18 (05) : 744 - +
  • [5] Robust detection of dynamic community structure in networks
    Bassett, Danielle S.
    Porter, Mason A.
    Wymbs, Nicholas F.
    Grafton, Scott T.
    Carlson, Jean M.
    Mucha, Peter J.
    [J]. CHAOS, 2013, 23 (01)
  • [6] Altered resting state complexity in schizophrenia
    Bassett, Danielle S.
    Nelson, Brent G.
    Mueller, Bryon A.
    Camchong, Jazmin
    Lim, Kelvin O.
    [J]. NEUROIMAGE, 2012, 59 (03) : 2196 - 2207
  • [7] Dynamic reconfiguration of human brain networks during learning
    Bassett, Danielle S.
    Wymbs, Nicholas F.
    Porter, Mason A.
    Mucha, Peter J.
    Carlson, Jean M.
    Grafton, Scott T.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) : 7641 - 7646
  • [8] Conserved and variable architecture of human white matter connectivity
    Bassett, Danielle S.
    Brown, Jesse A.
    Deshpande, Vibhas
    Carlson, Jean M.
    Grafton, Scott T.
    [J]. NEUROIMAGE, 2011, 54 (02) : 1262 - 1279
  • [9] Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits
    Bassett, Danielle S.
    Greenfield, Daniel L.
    Meyer-Lindenberg, Andreas
    Weinberger, Daniel R.
    Moore, Simon W.
    Bullmore, Edward T.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (04)
  • [10] Human brain networks in health and disease
    Bassett, Danielle S.
    Bullmore, Edward T.
    [J]. CURRENT OPINION IN NEUROLOGY, 2009, 22 (04) : 340 - 347