Surface modification of spinel Li4Ti5O12 with Fe for lithium ion batteries

被引:6
|
作者
Wang, B. F. [1 ]
Cao, J. [1 ]
Liu, Y. [1 ]
机构
[1] Shanghai Univ Elect Power, Shanghai 200090, Peoples R China
关键词
Surface modification; Spinel Li4Ti5O12; Lithium ion batteries; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; HYDROTHERMAL SYNTHESIS; RATE CAPABILITY; COMPOSITE; ELECTRODE; STORAGE;
D O I
10.1179/1753555713Y.0000000106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Special capacity and cycling performance of spinel Li4Ti5O12 anode material were improved by surface modification with Fe through a facile method. The phase structures, morphologies and electrochemical performance of pristine and Fe modified Li4Ti5O12 were investigated by Xray diffraction, scanning electron microscopy, Energy dispersive X-ray spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge tests. Electrochemical measurements demonstrated that the Li4Ti5O12/Fe electrode displayed enhanced special capacity and cycling performance compared with those of pristine Li4Ti5O12. The special capacity of Li4Ti5O12/Fe is 123.4 mAh g(-1) at 5C rate, much higher than 59.5 mAh g 21 of the pristine material. The Fe modified Li4Ti5O12 anode also showed superior cycling stability with an initial discharge capacity of 141 mAh g(-1) at 2C rate and still maintained 96.7% of its initial capacity after 300 cycles.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 50 条
  • [31] Li4Ti5O12/Reduced Graphene Oxide composite as a high rate capability material for lithium ion batteries
    Zhang, Qian
    Peng, Wenjie
    Wang, Zhixing
    Li, Xinhai
    Xiong, Xunhui
    Guo, Huajun
    Wang, Zhiguo
    Wu, Feixiang
    SOLID STATE IONICS, 2013, 236 : 30 - 36
  • [32] Low-temperature Synthesis of Peony-like Spinel Li4Ti5O12 as a High-performance Anode Material for Lithium Ion Batteries
    Li Guanchao
    Xia Jian
    Jiao Jiqing
    Chen Liuping
    Shen Peikang
    CHINESE JOURNAL OF CHEMISTRY, 2011, 29 (09) : 1824 - 1828
  • [33] Electrochemical and spectroscopic characterization of lithium titanate spinel Li4Ti5O12
    Schneider, Holger
    Maire, Pascal
    Novak, Petr
    ELECTROCHIMICA ACTA, 2011, 56 (25) : 9324 - 9328
  • [34] An infrared study of the surface chemistry of lithium titanate spinel (Li4Ti5O12)
    Snyder, Mark Q.
    DeSisto, William J.
    Tripp, Carl P.
    APPLIED SURFACE SCIENCE, 2007, 253 (24) : 9336 - 9341
  • [35] Spinel Li4Ti5O12/C composites as potential anode materials of lithium batteries
    Li, J. R.
    Tang, Z. L.
    Luo, S. H.
    Lu, J. B.
    Zhang, Z. T.
    HIGH-PERFORMANCE CERAMICS IV, PTS 1-3, 2007, 336-338 : 513 - +
  • [36] Hierarchical Li4Ti5O12/C composite for lithium-ion batteries with enhanced rate performance
    Cao, Ning
    Song, Zhonghai
    Liang, Qiu
    Gao, Xuejiao
    Qin, Xue
    ELECTROCHIMICA ACTA, 2017, 235 : 200 - 209
  • [37] Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries
    Wang, Jiaqing
    Yang, Zhenzhong
    Li, Weihan
    Zhong, Xiongwu
    Gu, Lin
    Yu, Yan
    JOURNAL OF POWER SOURCES, 2014, 266 : 323 - 331
  • [38] High rate cycling performance of nanosized Li4Ti5O12/graphene composites for lithium ion batteries
    Liu, Hai-ping
    Wen, Guang-wu
    Bi, Si-fu
    Wang, Chun-yu
    Hao, Jing-min
    Gao, Peng
    ELECTROCHIMICA ACTA, 2016, 192 : 38 - 44
  • [39] High Performance of Pb-doped Li4Ti5O12 as an Anode Material for Lithium Ion Batteries
    Ding, Keqiang
    Wei, Binjuan
    Zhang, Yan
    Li, Chenxue
    Shi, Xiaomi
    Pan, Junqing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (09): : 8381 - 8398
  • [40] Influence of carbon additive on the properties of spherical Li4Ti5O12 and LiFePO4 materials for lithium-ion batteries
    Gao, Jian
    Jiang, Changyin
    Wan, Chunrong
    IONICS, 2010, 16 (05) : 417 - 424