Multi-wall carbon nanotube coating of fluorine-doped tin oxide as an electrode surface modifier for polymer solar cells

被引:23
作者
Capasso, A. [1 ]
Salamandra, L. [2 ]
Chou, A. [1 ]
Di Carlo, A. [2 ]
Motta, N. [1 ]
机构
[1] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia
[2] Univ Roma Tor Vergata, Dept Elect Engn, CHOSE Ctr Hybrid & Organ Solar Energy, I-00133 Rome, Italy
关键词
Carbon nanotubes; Organic photovoltaics; Polymer solar cells; Transparent conductive oxide; Chemical vapor deposition; Surface modifier; LAYER;
D O I
10.1016/j.solmat.2013.10.022
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:297 / 302
页数:6
相关论文
共 40 条
[1]  
Beshkov G.D., EFFECT HIGH TEMPERAT
[2]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[3]   Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells [J].
Capasso, Andrea ;
Salamandra, Luigi ;
Di Carlo, Aldo ;
Bell, John M. ;
Motta, Nunzio .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2012, 3 :524-532
[4]   Visibly Transparent Polymer Solar Cells Produced by Solution Processing [J].
Chen, Chun-Chao ;
Dou, Letian ;
Zhu, Rui ;
Chung, Choong-Heui ;
Song, Tze-Bin ;
Zheng, Yue Bing ;
Hawks, Steve ;
Li, Gang ;
Weiss, Paul S. ;
Yang, Yang .
ACS NANO, 2012, 6 (08) :7185-7190
[5]   Characterization of amorphous and nanocrystalline carbon films [J].
Chu, PK ;
Li, LH .
MATERIALS CHEMISTRY AND PHYSICS, 2006, 96 (2-3) :253-277
[6]   Chemical oxidation of multiwalled carbon nanotubes [J].
Datsyuk, V. ;
Kalyva, M. ;
Papagelis, K. ;
Parthenios, J. ;
Tasis, D. ;
Siokou, A. ;
Kallitsis, I. ;
Galiotis, C. .
CARBON, 2008, 46 (06) :833-840
[7]   Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy [J].
DiLeo, Roberta A. ;
Landi, Brian J. ;
Raffaelle, Ryne P. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (06)
[8]   INTERCALATION COMPOUNDS OF GRAPHITE [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G .
ADVANCES IN PHYSICS, 1981, 30 (02) :139-326
[9]   Polarized Raman spectroscopy on isolated single-wall carbon nanotubes [J].
Duesberg, GS ;
Loa, I ;
Burghard, M ;
Syassen, K ;
Roth, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5436-5439
[10]   Photocurrent generation in random networks of multiwall-carbon-nanotubes grown by an "all-laser" process [J].
El Khakani, M. A. ;
Le Borgne, V. ;
Aissa, B. ;
Rosei, F. ;
Scilletta, C. ;
Speiser, E. ;
Scarselli, M. ;
Castrucci, P. ;
De Crescenzi, M. .
APPLIED PHYSICS LETTERS, 2009, 95 (08)