Online Change-Point Detection in Sparse Time Series With Application to Online Advertising
被引:14
|
作者:
Zhang, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Adobe Syst Inc, San Jose, CA 95110 USAAdobe Syst Inc, San Jose, CA 95110 USA
Zhang, Jie
[1
]
Wei, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USAAdobe Syst Inc, San Jose, CA 95110 USA
Wei, Zhi
[2
]
Yan, Zhenyu
论文数: 0引用数: 0
h-index: 0
机构:
Adobe Syst Inc, San Jose, CA 95110 USAAdobe Syst Inc, San Jose, CA 95110 USA
Yan, Zhenyu
[1
]
Zhou, MengChu
论文数: 0引用数: 0
h-index: 0
机构:
Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China
New Jersey Inst Technol, Helen & John C Hartmann Dept Elect & Comp Engn, Newark, NJ 07102 USAAdobe Syst Inc, San Jose, CA 95110 USA
Zhou, MengChu
[3
,4
]
Pani, Abhishek
论文数: 0引用数: 0
h-index: 0
机构:
Adobe Syst Inc, San Jose, CA 95110 USAAdobe Syst Inc, San Jose, CA 95110 USA
Pani, Abhishek
[1
]
机构:
[1] Adobe Syst Inc, San Jose, CA 95110 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China
[4] New Jersey Inst Technol, Helen & John C Hartmann Dept Elect & Comp Engn, Newark, NJ 07102 USA
来源:
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
|
2019年
/
49卷
/
06期
关键词:
Online advertising;
online change-point detection;
sparse time series (TS);
LIKELIHOOD-RATIO;
NETWORKS;
MODEL;
SELECTION;
D O I:
10.1109/TSMC.2017.2738151
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Online advertising delivers promotional marketing messages to consumers through online media. Advertisers often have the desire to optimize their advertising spending strategies in order to gain the highest return on investment and maximize their key performance indicator. To build accurate advertisement performance predictive models, it is crucial to detect the change-points in the historical data and apply appropriate strategies to address a data pattern shift problem. However, with sparse data, which is common in online advertising and some other applications, online change-point detection is very challenging. We present a novel collaborated online change-point detection method in this paper. Through efficiently leveraging and coordinating with auxiliary time series, we can quickly and accurately identify the change-points in sparse and noisy time series. Simulation studies as well as real data experiments have justified the proposed method's effectiveness in detecting changepoints in sparse time series. Therefore, it can be used to improve the accuracy of predictive models.
机构:
Univ Sao Paulo, Inst Math & Stat, Sao Paulo, BrazilUniv Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
Prates, Lucas
Lemes, Renan B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Biol Sci, Sao Paulo, BrazilUniv Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
Lemes, Renan B.
Hunemeier, Tabita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Biol Sci, Sao Paulo, Brazil
Univ Pompeu Fabra, Inst Biol Evolut, Barcelona, SpainUniv Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
Hunemeier, Tabita
Leonardi, Florencia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Stat, Sao Paulo, BrazilUniv Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
机构:
Iowa State Univ, Dept Ind & Mfg Syst Engn, 3031 Black Engn Bldg, Ames, IA 50011 USAIowa State Univ, Dept Ind & Mfg Syst Engn, 3031 Black Engn Bldg, Ames, IA 50011 USA
Li, Qing
Yao, Kehui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin Madison, Dept Stat, 1220 Med Sci Ctr, Madison, WI USAIowa State Univ, Dept Ind & Mfg Syst Engn, 3031 Black Engn Bldg, Ames, IA 50011 USA
Yao, Kehui
Zhang, Xinyu
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Stat, Raleigh, NC USAIowa State Univ, Dept Ind & Mfg Syst Engn, 3031 Black Engn Bldg, Ames, IA 50011 USA