Online Change-Point Detection in Sparse Time Series With Application to Online Advertising

被引:14
|
作者
Zhang, Jie [1 ]
Wei, Zhi [2 ]
Yan, Zhenyu [1 ]
Zhou, MengChu [3 ,4 ]
Pani, Abhishek [1 ]
机构
[1] Adobe Syst Inc, San Jose, CA 95110 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China
[4] New Jersey Inst Technol, Helen & John C Hartmann Dept Elect & Comp Engn, Newark, NJ 07102 USA
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2019年 / 49卷 / 06期
关键词
Online advertising; online change-point detection; sparse time series (TS); LIKELIHOOD-RATIO; NETWORKS; MODEL; SELECTION;
D O I
10.1109/TSMC.2017.2738151
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Online advertising delivers promotional marketing messages to consumers through online media. Advertisers often have the desire to optimize their advertising spending strategies in order to gain the highest return on investment and maximize their key performance indicator. To build accurate advertisement performance predictive models, it is crucial to detect the change-points in the historical data and apply appropriate strategies to address a data pattern shift problem. However, with sparse data, which is common in online advertising and some other applications, online change-point detection is very challenging. We present a novel collaborated online change-point detection method in this paper. Through efficiently leveraging and coordinating with auxiliary time series, we can quickly and accurately identify the change-points in sparse and noisy time series. Simulation studies as well as real data experiments have justified the proposed method's effectiveness in detecting changepoints in sparse time series. Therefore, it can be used to improve the accuracy of predictive models.
引用
收藏
页码:1141 / 1151
页数:11
相关论文
共 50 条
  • [1] Collaborated Online Change-point Detection in Sparse Time Series for Online Advertising
    Zhang, Jie
    Wei, Zhi
    Yan, Zhenyu
    Pani, Abhishek
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 1099 - 1104
  • [2] Online common change-point detection in a set of nonstationary categorical time series
    Leyli-Abadi, Milad
    Same, Allou
    Oukhellou, Latifa
    Cheifetz, Nicolas
    Mandel, Pierre
    Feliers, Cedric
    Heim, Veronique
    NEUROCOMPUTING, 2021, 439 : 176 - 196
  • [3] Online Change-Point Detection of Linear Regression Models
    Geng, Jun
    Zhang, Bingwen
    Huie, Lauren M.
    Lai, Lifeng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (12) : 3316 - 3329
  • [4] ONLINE CHANGE-POINT DETECTION FOR MATRIX-VALUED TIME SERIES WITH LATENT TWO-WAY FACTOR STRUCTURE
    He, Yong
    Kong, Xinbing
    Trapani, Lorenzo
    Yu, Long
    ANNALS OF STATISTICS, 2024, 52 (04) : 1646 - 1670
  • [5] Unsupervised online change point detection in high-dimensional time series
    Masoomeh Zameni
    Amin Sadri
    Zahra Ghafoori
    Masud Moshtaghi
    Flora D. Salim
    Christopher Leckie
    Kotagiri Ramamohanarao
    Knowledge and Information Systems, 2020, 62 : 719 - 750
  • [6] Unsupervised online change point detection in high-dimensional time series
    Zameni, Masoomeh
    Sadri, Amin
    Ghafoori, Zahra
    Moshtaghi, Masud
    Salim, Flora D.
    Leckie, Christopher
    Ramamohanarao, Kotagiri
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (02) : 719 - 750
  • [7] Online Structural Change-Point Detection of High-dimensional Streaming Data via Dynamic Sparse Subspace Learning
    Xu, Ruiyu
    Wu, Jianguo
    Yue, Xiaowei
    Li, Yongxiang
    TECHNOMETRICS, 2023, 65 (01) : 19 - 32
  • [8] Comprehensive analysis of change-point dynamics detection in time series data: A review
    Gupta, Muktesh
    Wadhvani, Rajesh
    Rasool, Akhtar
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 248
  • [9] A SELF-NORMALIZED APPROACH TO SEQUENTIAL CHANGE-POINT DETECTION FOR TIME SERIES
    Chan, Ngai Hang
    Ng, Wai Leong
    Yau, Chun Yip
    STATISTICA SINICA, 2021, 31 (01) : 491 - 517
  • [10] SEQUENTIAL CHANGE-POINT DETECTION IN TIME SERIES MODELS BASED ON PAIRWISE LIKELIHOOD
    Leung, Sze Him
    Ng, Wai Leong
    Yau, Chun Yip
    STATISTICA SINICA, 2017, 27 (02) : 575 - 605