Steady finite-amplitude waves on a horizontal seabed of arbitrary depth

被引:21
作者
Clamond, D [1 ]
机构
[1] Lab Sondages Electromagnet Environm Terr, F-83957 La Garde, France
关键词
D O I
10.1017/S0022112099006151
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
From shallow-water gravity wave theories it is shown that the velocity field in the whole fluid domain can be reconstructed using an analytic transformation (a renormalization). The resulting velocity field satisfies the Laplace equation exactly, which is not the case for shallow-water approximations. Applying the renormalization to the first-order shallow-water solution of limited accuracy, gives accurate simple solutions for both long and short waves, even for large amplitudes. The KdV and Airy solutions are special limiting cases.
引用
收藏
页码:45 / 60
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]  
Boussinesq J., 1872, J. Math. Pures Appl, V17, P55
[3]   Reconstruction of a long wave velocity field [J].
Clamond, D .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1998, 326 (02) :91-94
[4]  
Dean R.G., 1991, WATER WAVE MECH ENG, V2
[5]   NINTH-ORDER SOLUTION FOR SOLITARY WAVE [J].
FENTON, J .
JOURNAL OF FLUID MECHANICS, 1972, 53 (MAY23) :257-&
[6]  
Fenton J. D., 1990, SEA, V9, P3
[7]   A 5TH-ORDER STOKES THEORY FOR STEADY WAVES [J].
FENTON, JD .
JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 1985, 111 (02) :216-234
[8]   RAPIDLY-CONVERGENT METHODS FOR EVALUATING ELLIPTIC INTEGRALS AND THETA AND ELLIPTIC FUNCTIONS [J].
FENTON, JD ;
GARDINERGARDEN, RS .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1982, 24 (JUL) :47-58
[9]   THE NUMERICAL-SOLUTION OF STEADY WATER-WAVE PROBLEMS [J].
FENTON, JD .
COMPUTERS & GEOSCIENCES, 1988, 14 (03) :357-368
[10]  
FENTON JD, 1979, J FLUID MECH, V94, P129, DOI 10.1017/S0022112079000975