共 50 条
Self-Quenching and Slow Hole Injection May Limit the Efficiency in NiO-Based Dye-Sensitized Solar Cells
被引:13
|作者:
Fohlinger, Jens
[1
]
Maji, Somnath
[1
,2
]
Brown, Allison
[1
]
Mijangos, Edgar
[1
]
Ott, Sascha
[1
]
Hammarstrom, Leif
[1
]
机构:
[1] Uppsala Univ, Angstrom Lab, Dept Chem, SE-75120 Uppsala, Sweden
[2] Indian Instutute Technol, Hyderabad, Telangana, India
基金:
瑞典研究理事会;
关键词:
PHOTOINDUCED ELECTRON-TRANSFER;
EXCITED-STATE DECAY;
RU-II COMPLEXES;
CONVERSION-EFFICIENCY;
TRANSFER DYNAMICS;
PHOTOCATHODES;
TRIS(2,2-BIPYRIDYL)RUTHENIUM(II);
PHOTOCHEMISTRY;
PHOTOPHYSICS;
KINETICS;
D O I:
10.1021/acs.jpcc.8b01016
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
A series of bis-tridentate ruthenium complexes was designed to feature opposite localizations of their lowest metal-to-ligand charge transfer (MLCT) excited states, relative to a carboxylic acid that served as a binding group to mesoporous NiO. The purpose was to study the effect of MLCT direction on the rates of hole injection into NiO and subsequent charge recombination. Surprisingly, femtosecond-transient absorption spectroscopy showed that the two heteroleptic, cyclometalated complexes of this series did not inject holes into NiO, but their excited states were nevertheless quenched in a rapid process (on the time scale of hundreds of picoseconds). An identical result was obtained for the dyes on nonreactive ZrO2 and we therefore attribute the short MLCT lifetime to self-quenching, due the high surface concentrations of the dyes. We further show that self quenching on this time scale can potentially compete with hole injection also for functional NiO sensitizers. A ruthenium polypyridine complex, which has previously been used for NiO-based solar cells, was shown to inject holes only very slowly (tau approximate to 5 ns), in contrast to the common notion that hole injection in dye-NiO systems is ultrafast (predominantly subpicosecond time scale). The hole injection yield was estimated to only ca. 20%, which matches the reported APCE value of the corresponding device [Freys, J. C.; Gardner, J. M.; D'Amario, L.; Brown, A. M.; Hammarstrom, L. Dalton Trans. 2012, 41, 13105]. Therefore, we suggest that slow injection and self-quenching might be a reason for the low photovoltaic performance of some p-type dye sensitized solar cells.
引用
收藏
页码:13902 / 13910
页数:9
相关论文