Ordering trees by their largest eigenvalues

被引:25
作者
Lin, Wenshui [1 ]
Guo, Xiaofeng [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
tree; characteristic polynomial; eigenvalue; spectral radius; ordering;
D O I
10.1016/j.laa.2006.02.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Delta(T) and lambda(1)(T) denote the maximum degree and the largest eigenvalue of a tree T, respectively. Let T-n be the set of trees on n vertices, and T-n((Delta)) = {T is an element of T-n vertical bar Delta(T) = Delta}. In the present paper, among the trees in T-n((Delta)) (n >= 4), we characterize the tree which alone minimizes the largest eigenvalue, as well as the tree which alone maximizes the largest eigenvalue when [(n-2)/(2)] <= Delta <= n-1. Furthermore, it is proved that, for two trees T-1 and T-2 in T-n (n >= 4), if Delta(T-1) >= [(2n)/(3)]-1 and Delta(T-1) > Delta(T-2), then lambda(1)(T-1) > lambda(1)(T-2). By applying this result, we extend the order of trees in T-n by their largest eigenvalues to the 13th tree when n >= 12. This extends the results of Hofmeister [Linear Algebra Appl. 260 (1997) 43] and Chang et al. [Linear Algebra Appl. 370 (2003) 175]. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:450 / 456
页数:7
相关论文
共 15 条
[1]  
[Anonymous], [No title captured]
[2]   PERMANENT OF THE LAPLACIAN MATRIX OF TREES AND BIPARTITE GRAPHS [J].
BRUALDI, RA ;
GOLDWASSER, JL .
DISCRETE MATHEMATICS, 1984, 48 (01) :1-21
[3]   Ordering trees by their largest eigenvalues [J].
Chang, A ;
Huang, QX .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 (SUPP) :175-184
[4]   On the largest eigenvalue of a tree with perfect matchings [J].
Chang, A .
DISCRETE MATHEMATICS, 2003, 269 (1-3) :45-63
[5]  
Cvetkovic D., 1995, Spectra of Graphs-Theory and Application, V3rd ed.
[6]  
CVETKOVIC D, 1997, EIGENSPACES GRAPHS
[7]  
CVETKOVIC D, 1981, ALGEBRA METHODS GRAP, V1, P47
[8]  
GUO JM, 2001, LINEAR ALGEBRA APPL, V329, P1
[9]  
Hofmeister M, 1997, LINEAR ALGEBRA APPL, V260, P43, DOI 10.1016/S0024-3795(96)00249-2
[10]  
Li Qiao, 1979, Acta Mathematicae Applacatae Sinica, V2, P167