A class of periodic solutions of (2+1)-dimensional Boussinesq equation

被引:15
作者
Zhang, JF [1 ]
Lai, XJ [1 ]
机构
[1] Zhejiang Normal Univ, Inst Theorial Phys, Jinhua 321004, Peoples R China
关键词
mapping method; linear superposition; Boussinesq;
D O I
10.1143/JPSJ.73.2402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An alternative derivation of linear superposition periodic solutions for (2 + 1)-dimensional Boussinesq equation is presented. These new solutions are the suitable combinations of the known periodic solutions obtained by means of Jacobian elliptic function method, and they exists with different periods and velocities.
引用
收藏
页码:2402 / 2405
页数:4
相关论文
共 17 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[2]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[3]   1ST-ORDER EXACT-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION IN THE NORMAL-DISPERSION REGIME [J].
AKHMEDIEV, N ;
ANKIEWICZ, A .
PHYSICAL REVIEW A, 1993, 47 (04) :3213-3221
[5]   New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation [J].
Chen, Y ;
Yan, ZY ;
Zhang, H .
PHYSICS LETTERS A, 2003, 307 (2-3) :107-113
[6]   SOLITARY WAVES ON A CONTINUOUS-WAVE BACKGROUND [J].
CHOW, KW .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (05) :1524-1528
[7]   Periodic solutions of nonlinear equations obtained by linear superposition [J].
Cooper, F ;
Khare, A ;
Sukhatme, U .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (47) :10085-10100
[8]   Applications of the Jacobi elliptic function method to special-type nonlinear equations [J].
Fan, EG ;
Zhang, H .
PHYSICS LETTERS A, 2002, 305 (06) :383-392
[9]   A two-dimensional Boussinesq equation for water waves and some of its solutions [J].
Johnson, RS .
JOURNAL OF FLUID MECHANICS, 1996, 323 :65-78
[10]   Linear superposition in nonlinear equations [J].
Khare, A ;
Sukhatme, U .
PHYSICAL REVIEW LETTERS, 2002, 88 (24) :4-244101