On the divergence of double Fourier-Walsh-Paley series of continuous functions

被引:3
作者
Getsadze, Rostom [1 ]
机构
[1] Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2020年 / 86卷 / 1-2期
基金
美国国家科学基金会;
关键词
Walsh-Paley; double Fourier series; divergence a.e; CONVERGENCE;
D O I
10.14232/actasm-019-319-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that there exists a continuous function on [0, 1)(2), with a certain smoothness, whose double Fourier-Walsh-Paley series diverges by rectangles on a set of positive measure.
引用
收藏
页码:287 / 302
页数:16
相关论文
共 16 条
[1]  
[Anonymous], 1926, C. R. Acad. Sci. Paris
[2]  
Bakhbookh A., 1973, SIB MAT ZH, V14, P1189
[3]  
Bakhbookh A., 1973, SIBIRS MATH Z, V14, P1365
[5]  
Bochkarev SV, 2000, DOKL AKAD NAUK+, V371, P730
[6]   ON CONVERGENCE AND GROWTH OF PARTIAL SUMS OF FOURIER SERIES [J].
CARLESON, L .
ACTA MATHEMATICA UPPSALA, 1966, 116 (1-2) :135-&
[7]   DIVERGENCE OF MULTIPLE FOURIER SERIES [J].
FEFFERMAN, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (02) :191-+
[8]   ON THE WALSH FUNCTIONS [J].
FINE, NJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 65 (MAY) :372-414
[9]  
GETSADZE RD, 1985, MATH USSR SB+, V128, P262
[10]  
Kashin B.S., 1989, TRANSL MATH MONOGR, V75