Robust controllability of interval fractional order linear time invariant systems

被引:0
|
作者
Chen, YangQuan [1 ]
Ahn, Hyo-Sung [1 ]
Xue, Dingyu [1 ]
机构
[1] Utah State Univ, Coll Engn, Ctr Self Organizing & Intelligent Syst, Dept Elect & Comp Engn, Logan, UT 84322 USA
关键词
fractional order systems; robust controllability; interval linear time invariant systems; interval matrix; linear dependency of interval vectors;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider uncertain fractional-order linear time invariant (FO-LTI) systems with interval coefficients. Our focus is on the robust controllability issue for interval FO-LTI systems in state-space form. We re-visited the controllability problem for the case when there is no interval uncertainty. It turns out that the stability check for FO-LTI systems amounts to checking the conventional integer order state space using the same state matrix A and the input coupling matrix B. Based on this fact, we further show that, for interval FO-LTI systems, the key is to check the linear dependency of a set of interval vectors. Illustrative examples are presented.
引用
收藏
页码:1537 / 1545
页数:9
相关论文
共 50 条
  • [1] Robust controllability of interval fractional order linear time invariant systems
    Chen, YangQuan
    Ahn, Hyo-Sung
    Xue, Dingyu
    SIGNAL PROCESSING, 2006, 86 (10) : 2794 - 2802
  • [2] Robust controllability of interval fractional order linear time invariant stochastic systems
    Zeng, Caibin
    Chen, YangQuan
    Yang, Qigui
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 4047 - 4050
  • [3] Robust controllability of linear time-invariant interval systems
    Chen, Shinn-Horng
    Chou, Jyh-Horng
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2013, 36 (05) : 672 - 676
  • [4] Robust stability check of fractional order linear time invariant systems with interval uncertainties
    Chen, YangQuan
    Ahn, Hyo-Sung
    Podlubny, Igor
    SIGNAL PROCESSING, 2006, 86 (10) : 2611 - 2618
  • [5] Robust stability check of fractional order linear time invariant systems with interval uncertainties
    Chen, YangQuan
    Ahn, Hyo-Sung
    Podlubny, Igor
    2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, 2005, : 210 - 215
  • [6] Interval estimation for nabla fractional order linear time-invariant systems
    Wei, Yingdong
    Wei, Yiheng
    Wang, Yong
    Xie, Min
    ISA TRANSACTIONS, 2022, 131 : 83 - 94
  • [7] Controllability, Observability and Stability for a Class of Fractional-Order Linear Time-Invariant Control Systems
    曾庆山
    曹广益
    朱新坚
    JournalofShanghaiJiaotongUniversity, 2004, (02) : 20 - 24
  • [8] Stability of linear time invariant systems with interval fractional orders and interval coefficients
    Petrás, I
    Chen, YQ
    Vinagre, BM
    Podlubny, I
    ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 341 - 346
  • [9] On robust stability of linear time invariant fractional-order systems with real parametric uncertainties
    Moornani, Kamran Akbari
    Haeri, Mohammad
    ISA TRANSACTIONS, 2009, 48 (04) : 484 - 490
  • [10] Robust non-fragile fractional order PID controller for linear time invariant fractional delay systems
    Mesbahi, Afshin
    Haeri, Mohammad
    JOURNAL OF PROCESS CONTROL, 2014, 24 (09) : 1489 - 1494