Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements

被引:50
作者
Bystrov, V. S. [1 ,2 ,3 ]
Seyedhosseini, E. [1 ,2 ]
Kopyl, S. [4 ]
Bdikin, I. K. [4 ]
Kholkin, A. L. [1 ,2 ]
机构
[1] Univ Aveiro, Dept Mat Engn & Ceram, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal
[3] Russian Acad Sci, Inst Math Problems Biol, Pushchino 142290, Moscow Region, Russia
[4] Univ Aveiro, TEMA NRD, Dept Mech Engn, AIN, P-3810193 Aveiro, Portugal
关键词
DIPHENYLALANINE PEPTIDE NANOTUBES; CRYSTAL STRUCTURE; THERMODYNAMIC ASPECTS; OPTICAL-PROPERTIES; GLYCINE; BIOFERROELECTRICITY; POLYMORPHISM; PHENYLALANINE; STABILITY; PHASE;
D O I
10.1063/1.4891443
中图分类号
O59 [应用物理学];
学科分类号
摘要
Piezoelectricity is one of the important functional properties inherent to many biomaterials. It stems from the non-centrosymmetric crystal structure of most biopolymers including proteins, polysaccharides, and lipids. Understanding the relationship between the generated electric field and applied mechanical stress has become the main motivation to studying piezoelectricity in biological systems and artificial biomaterials at the nanoscale. In this work, we present a review of the piezoelectric and ferroelectric properties of several molecular systems and nanomaterials revealed by Piezoresponse Force Microscopy (PFM) and compare the results with molecular modeling and computer simulations. Experimentally observed by PFM and calculated dielectric, piezoelectric, and ferroelectric properties of these materials are analyzed in the context of their possible role in functionality of biological systems. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 90 条
[1]   Antiferroelectric ordering of amphiphilic glycolipids in bent-core liquid crystals -: art. no. 021703 [J].
Abeygunaratne, S ;
Jákli, A ;
Milkereit, G ;
Sawade, H ;
Vill, V .
PHYSICAL REVIEW E, 2004, 69 (02) :021703-1
[2]   Thermal and chemical stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications [J].
Adler-Abramovich, L ;
Reches, M ;
Sedman, VL ;
Allen, S ;
Tendler, SJB ;
Gazit, E .
LANGMUIR, 2006, 22 (03) :1313-1320
[3]   Ferroelectric and Related Phenomena in Biological and Bioinspired Nanostructures [J].
Amdursky, N. ;
Beker, P. ;
Schklovsky, J. ;
Gazit, E. ;
Rosenman, G. .
FERROELECTRICS, 2010, 399 :107-117
[4]  
[Anonymous], 2003, FERROELECTRICS, V285, P207
[5]  
[Anonymous], 2011, ADV MAT, V23, P2098
[6]  
[Anonymous], 2002, HYPERCHEM 7 5 TOOLS
[7]   PYROELECTRIC AND PIEZOELECTRIC PROPERTIES OF VERTEBRATES [J].
ATHENSTAEDT, H .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1974, 238 (OCT11) :68-94
[8]   Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future [J].
Balke, Nina ;
Bdikin, Igor ;
Kalinin, Sergei V. ;
Kholkin, Andrei L. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (08) :1629-1647
[9]   Polarization switching and patterning in self-assembled peptide tubular structures [J].
Bdikin, Igor ;
Bystrov, Vladimir ;
Delgadillo, Ivonne ;
Gracio, Jose ;
Kopyl, Svitlana ;
Wojtas, Maciej ;
Mishina, Elena ;
Sigov, Alexander ;
Kholkin, Andrei L. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
[10]   Evidence of ferroelectricity and phase transition in pressed diphenylalanine peptide nanotubes [J].
Bdikin, Igor ;
Bystrov, Vladimir ;
Kopyl, Svitlana ;
Lopes, Rui P. G. ;
Delgadillo, Ivonne ;
Gracio, Jose ;
Mishina, Elena ;
Sigov, Alexander ;
Kholkin, Andrei L. .
APPLIED PHYSICS LETTERS, 2012, 100 (04)