Preferential accumulation of microbial carbon in aggregate structures of no-tillage soils

被引:150
作者
Simpson, RT
Frey, SD [1 ]
Six, J
Thiet, RK
机构
[1] Univ New Hampshire, Dep Nat Resources, Durham, NH 03824 USA
[2] Univ Calif Davis, Dept Agron & Range Sci, Davis, CA 95616 USA
关键词
D O I
10.2136/sssaj2004.1249
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
We examined the effect of reduced tillage on the accumulation of fungal- versus bacterial-derived organic matter within the soil matrix by quantifying the amino sugars glucosamine (Glc), galactosamine (Gal), and muramic acid (MurA) in aggregate-size fractions isolated from no-tillage (NT) and conventional-tillage (CT) soil. Intact soil cores (0- to 5- and 5- to 20-cm depth) were collected from the long-term tillage experiment at Horseshoe Bend in Athens, GA. Four water-stable aggregate-size fractions were isolated: large microaggregates (>2000 mum), small macroaggregates (250-2000 mum), microaggregates (53-250 mum), and the silt + clay fraction (<53 mum). Small macroaggregates were further separated into coarse particulate organic matter (POM) (>250 mum), microaggregates contained within macroaggregates, and the silt + clay fraction. Amino sugars were extracted from all fractions, purified, and analyzed by gas chromatography. Fungal-derived amino sugar C (FAS-C) comprised 63%, while bacterial-derived amino sugar C (BAS-C) accounted for 37% of the total amino sugar C pool under both tillage treatments. No-tillage soil contained 21% more amino sugar C than the CT soil across the entire plow layer. Both, the percentage of total organic C as FAS-C and BAS-C were significantly higher in the silt + clay fraction of NT versus CT soil. The percentage of total organic C as FAS-C was significantly higher in small macroaggregates of NT versus CT soil due to a preferential accumulation of FAS-C in the microaggregates contained within these macroaggregates. These results indicate that microbial-derived C is stabilized in NT soils, due primarily to a greater fungal-mediated improvement of soil structural stability and concurrent deposition of fungal-derived C in microaggregates contained within macroaggregates.
引用
收藏
页码:1249 / 1255
页数:7
相关论文
共 32 条
[1]   Fate of microbial residues during litter decomposition as affected by minerals [J].
Amelung, W ;
Miltner, A ;
Zhang, X ;
Zech, W .
SOIL SCIENCE, 2001, 166 (09) :598-606
[2]   Amino sugars in native grassland soils along a climosequence in North America [J].
Amelung, W ;
Zhang, X ;
Flach, KW ;
Zech, W .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1999, 63 (01) :86-92
[3]   EFFECTS OF TILL VS NO-TILL ON THE QUALITY OF SOIL ORGANIC-MATTER [J].
ARSHAD, MA ;
SCHNITZER, M ;
ANGERS, DA ;
RIPMEESTER, JA .
SOIL BIOLOGY & BIOCHEMISTRY, 1990, 22 (05) :595-599
[4]   Carbohydrate composition in relation to structural stability, compactibility and plasticity of two soils in a long-term experiment [J].
Ball, BC ;
Cheshire, MV ;
Robertson, EAG ;
Hunter, EA .
SOIL & TILLAGE RESEARCH, 1996, 39 (3-4) :143-160
[5]  
Beare M.H., 1997, SOIL ECOLOGY SUSTAIN, P37
[6]   MICROBIAL AND FAUNAL INTERACTIONS AND EFFECTS ON LITTER NITROGEN AND DECOMPOSITION IN AGROECOSYSTEMS [J].
BEARE, MH ;
PARMELEE, RW ;
HENDRIX, PF ;
CHENG, WX ;
COLEMAN, DC ;
CROSSLEY, DA .
ECOLOGICAL MONOGRAPHS, 1992, 62 (04) :569-591
[7]   Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils [J].
Beare, MH ;
Hus, S ;
Coleman, DC ;
Hendrix, PF .
APPLIED SOIL ECOLOGY, 1997, 5 (03) :211-219
[8]   WATER-STABLE AGGREGATES AND ORGANIC-MATTER FRACTIONS IN CONVENTIONAL-TILLAGE AND NO-TILLAGE SOILS [J].
BEARE, MH ;
HENDRIX, PF ;
COLEMAN, DC .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (03) :777-786
[9]   Aggregate-protected carbon in no-tillage and conventional tillage agroecosystems using carbon-14 labeled plant residue [J].
Bossuyt, H ;
Six, J ;
Hendrix, PF .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2002, 66 (06) :1965-1973
[10]   Influence of microbial populations and residue quality on aggregate stability [J].
Bossuyt, H ;
Denef, K ;
Six, J ;
Frey, SD ;
Merckx, R ;
Paustian, K .
APPLIED SOIL ECOLOGY, 2001, 16 (03) :195-208