Yet another four-dimensional chaotic system with multiple coexisting attractors

被引:3
作者
He, Yun [1 ]
Xu, Hui-Ming [2 ]
机构
[1] Jiangxi Univ Technol, Dept Sci Educ, Nanchang 330098, Jiangxi, Peoples R China
[2] Jiangxi Univ Technol, Sch Management, Nanchang 330098, Jiangxi, Peoples R China
来源
OPTIK | 2017年 / 132卷
关键词
Chaotic system; Coexisting attractors; Feedback control; Simulation; NO EQUILIBRIA;
D O I
10.1016/j.ijleo.2016.12.014
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The study of nonlinear system with coexisting chaotic attractors is of recent interest. In this letter, we introduce a new four-dimensional chaotic system with coexisting attractors. The system has three quadratic nonlinearities and only one unstable fixed point. Basic dynamics of the system are analyzed, including dissipativity, equilibria, etc. The coexisting attractors in the system is investigated by numerical simulation. The control problem of the system is also considered. By using an ordinary feedback controller and a speed feedback controller, the chaotic behavior of the system can be well suppressed. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 20 条
[1]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[2]   Multiscroll chaotic oscillators:: The nonautonomous approach [J].
Elwakil, A. S. ;
Ozoguz, S. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (09) :862-866
[3]   Elementary quadratic chaotic flows with no equilibria [J].
Jafari, Sajad ;
Sprott, J. C. ;
Golpayegani, S. Mohammad Reza Hashemi .
PHYSICS LETTERS A, 2013, 377 (09) :699-702
[4]   Generating Multiple Chaotic Attractors from Sprott B System [J].
Lai, Qiang ;
Chen, Shiming .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (11)
[5]   Coexisting attractors generated from a new 4D smooth chaotic system [J].
Lai, Qiang ;
Chen, Shiming .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (04) :1124-1131
[6]   Research on a new 3D autonomous chaotic system with coexisting attractors [J].
Lai, Qiang ;
Chen, Shiming .
OPTIK, 2016, 127 (05) :3000-3004
[7]   GENERATION OF MULTI-WING CHAOTIC ATTRACTORS FROM A LORENZ-LIKE SYSTEM [J].
Lai, Qiang ;
Guan, Zhi-Hong ;
Wu, Yonghong ;
Liu, Feng ;
Zhang, Ding-Xue .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (09)
[8]   MULTISTABILITY IN A BUTTERFLY FLOW [J].
Li, Chunbiao ;
Sprott, J. C. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (12)
[9]   Analysis of a novel three-dimensional chaotic system [J].
Li, Chunlai ;
Li, Hongmin ;
Tong, Yaonan .
OPTIK, 2013, 124 (13) :1516-1522
[10]   Chaos in Chen's system with a fractional order [J].
Li, CP ;
Peng, GJ .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :443-450