Two Ways to Increase the Pulse Duration of the Solid Pulse-Forming Line Based on Dispersion Analysis

被引:10
作者
Wang, Langning [1 ]
Liu, Jinliang [1 ]
机构
[1] Natl Univ Def Technol, Coll Optoelect Sci & Engn, Changsha 410073, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Dispersion analysis; pulse duration; slow wave; solid pulse-forming line (PFL); POWER; SYSTEM;
D O I
10.1109/TPS.2015.2481710
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Solid dielectrics have been widely investigated as potential attractive candidates in compact portable pulsed-power systems. Slow-wave structure with good dispersion characteristics and broad transmission band can be used to increase the pulse duration while the size of pulse-forming line (PFL) decreases. In this paper, we present two different slow-wave structures, the tape helix for coaxial-line and the meander-line structure for the planar line, to increase the pulse duration of solid PFLs based on dispersion analysis. At first, the characteristic impedances, electric length, and dispersion curve of the PFL with the slowwave structure are calculated by the electromagnetic dispersion theory. Based on the theoretical calculations, the PFLs are designed and simulated by the electromagnetic field tool. Finally, some test results on the PFLs are introduced. Currently, both the Al2O3 (epsilon(r) = 9.3) helical PFL and the glass-ceramic (epsilon(r) = 225) meander-line PFL can deliver a pulsewith 50-ns width, of which the dimension is phi 67 mm x 305 mm and 95 mm x 95 mm x 4 mm, respectively.
引用
收藏
页码:3901 / 3907
页数:7
相关论文
共 44 条
[1]  
Booske J. H., 2002, Third IEEE International Vacuum Electronics Conference (IEEE Cat. No.02EX524), P11, DOI 10.1109/IVELEC.2002.999234
[2]   The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications [J].
Bussiahn, R. ;
Brandenburg, R. ;
Gerling, T. ;
Kindel, E. ;
Lange, H. ;
Lembke, N. ;
Weltmann, K-D ;
von Woedtke, Th ;
Kocher, T. .
APPLIED PHYSICS LETTERS, 2010, 96 (14)
[3]  
Cheng YL, 2006, INT CONF LASER FIBER, P62
[4]   Low-losses, highly tunable Ba0.6Sr0.4TiO3/MgO composite [J].
Chung, U. -Chan ;
Elissalde, C. ;
Maglione, M. ;
Estournes, C. ;
Pate, M. ;
Ganne, J. P. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[5]   Accurate analysis of helix slow-wave structures [J].
D'Agostino, S ;
Emma, F ;
Paoloni, C .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (07) :1605-1613
[6]   Impact of a surface laser treatment on the dielectric strength of α-alumina [J].
Decup, Michael ;
Malec, David ;
Bley, Vincent .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[7]   A BROAD-BAND INTERDIGITAL CIRCUIT FOR USE IN TRAVELING-WAVE-TYPE AMPLIFIERS [J].
FLETCHER, RC .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1952, 40 (08) :951-958
[8]   Research issues in developing compact pulsed power for high peak power applications on mobile platforms [J].
Gaudet, JA ;
Barker, RJ ;
Buchenauer, CJ ;
Christodoulou, C ;
Dickens, J ;
Gundersen, MA ;
Joshi, RP ;
Krompholz, HG ;
Kolb, JE ;
Kuthi, A ;
Laroussi, M ;
Neuber, A ;
Nunnally, W ;
Schamiloglu, E ;
Schoenbach, KH ;
Tyo, JS ;
Vidmar, RJ .
PROCEEDINGS OF THE IEEE, 2004, 92 (07) :1144-1165
[9]   Bipolar pulse generator for intense pulsed ion beam accelerator [J].
Ito, H. ;
Igawa, K. ;
Kitamura, I. ;
Masugata, K. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01)
[10]  
Jue W., 2007, 34 IEEE INT C PLASM, P388