The Segal algebra S0(Rd) and norm summability of Fourier series and Fourier transforms

被引:0
作者
Feichtinger, Hans G.
Weisz, Ferenc
机构
[1] Univ Vienna, Fac Math, Numer Harmon Anal Grp, Vienna, Austria
[2] Eotvos Lorand Univ, Dept Numer Anal, H-1117 Budapest, Hungary
来源
MONATSHEFTE FUR MATHEMATIK | 2006年 / 148卷 / 04期
关键词
Wiener algebra; Feichtinger's algebra; homogeneous Banach space; theta-summability of Fourier series; Besov-; Sobolev-; fractional Sobolev spaces; amalgam spaces;
D O I
10.1007/s00605-005-0358-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general summability method, the so-called theta-summability is considered for multi-dimensional Fourier series. Equivalent conditions are derived for the uniform and L (1)-norm convergence of the theta-means sigma (theta)(n)f to the function f. If f is in a homogeneous Banach space, then the preceeding convergence holds in the norm of the space. In case theta is an element of Feichtinger's Segal algebra S-0(R-d), then these convergence results hold. Some new sufficient conditions are given for theta to be in S-0(R-d). A long list of concrete special cases of the theta-summation is listed. The same results are also provided in the context of Fourier transforms, indicating how proofs have to be changed in this case.
引用
收藏
页码:333 / 349
页数:17
相关论文
共 38 条
  • [1] [Anonymous], 2002, TRIGONOMETRIC SERIES
  • [2] Bachman G, 2000, UNIVERSITEX
  • [3] BELINSKII ES, 1977, SIBERIAN MATH J+, V18, P353
  • [4] l-1 summability of multiple Fourier integrals and positivity
    Berens, H
    Xu, Y
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 122 : 149 - 172
  • [5] On l-1 Riesz summability of the inverse Fourier integral
    Berens, H
    Li, ZK
    Xu, Y
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2001, 12 (01): : 41 - 53
  • [6] Butzer Paul L., 1971, Fourier Analysis and Approximation: One Dimensional Theory
  • [7] Davis K. M., 1987, LECT BOCHNER RIESZ M
  • [8] ON A NEW SEGAL ALGEBRA
    FEICHTINGER, HG
    [J]. MONATSHEFTE FUR MATHEMATIK, 1981, 92 (04): : 269 - 289
  • [9] Feichtinger HG, 1998, APPL NUM HARM ANAL, P123
  • [10] FEICHTINGER HG, 2006, IN PRESS MATH P CAMB, V140