Role of Diacylglycerol Kinases in Glucose and Energy Homeostasis

被引:29
作者
Massart, Julie [1 ]
Zierath, Juleen R. [1 ,2 ,3 ]
机构
[1] Karolinska Inst, Dept Mol Med & Surg, Stockholm, Sweden
[2] Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden
[3] Univ Copenhagen, Novo Nordisk Fdn Ctr Basic Metab Res, Fac Hlth & Med Sci, Copenhagen, Denmark
基金
瑞典研究理事会;
关键词
INDUCED INSULIN-RESISTANCE; PLECKSTRIN HOMOLOGY DOMAIN; PROTEIN-KINASE; SKELETAL-MUSCLE; MOLECULAR-CLONING; DGK-ZETA; PHOSPHATIDIC-ACID; LIPID-METABOLISM; GENE-EXPRESSION; DOWN-REGULATION;
D O I
10.1016/j.tem.2019.06.003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Diacylglycerol kinases (DGKs) catalyze a reaction that converts diacylglycerol (DAG) to phosphatidic acid (PA). DAG and PA act as intermediates of de novo lipid synthesis, cellular membrane constituents, and signaling molecules. DGK isoforms regulate a variety of intracellular processes by terminating DAG signaling and activating PA-mediated pathways. The ten DGK isoforms are unique, not only structurally, but also in tissue-specific expression profiles, subcellular localization, regulatory mechanisms, and DAG preferences, suggesting isoform-specific functions. DAG accumulation has been associated with insulin resistance; however, this concept is challenged by opposing roles of DGK isoforms in the development of type 2 diabetes and obesity despite elevated DAG levels. This review focuses on the tissue- and isoform-specific role of DGK in glucose and energy homeostasis.
引用
收藏
页码:603 / 617
页数:15
相关论文
共 105 条
[1]   Activation of Wnt/β-Catenin Signaling Increases Insulin Sensitivity through a Reciprocal Regulation of Wnt10b and SREBP-1c in Skeletal Muscle Cells [J].
Abiola, Mounira ;
Favier, Maryline ;
Christodoulou-Vafeiadou, Eleni ;
Pichard, Anne-Lise ;
Martelly, Isabelle ;
Guillet-Deniau, Isabelle .
PLOS ONE, 2009, 4 (12)
[2]   Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance Another Paradox in Endurance-Trained Athletes? [J].
Amati, Francesca ;
Dube, John J. ;
Alvarez-Carnero, Elvis ;
Edreira, Martin M. ;
Chomentowski, Peter ;
Coen, Paul M. ;
Switzer, Galen E. ;
Bickel, Perry E. ;
Stefanovic-Racic, Maja ;
Toledo, Frederico G. S. ;
Goodpaster, Bret H. .
DIABETES, 2011, 60 (10) :2588-2597
[3]  
Begin S., 2016, INTEGR OBES DIABETES, V2, P219
[4]   DGKζ deficiency protects against peripheral insulin resistance and improves energy metabolism [J].
Benziane, Boubacar ;
Borg, Melissa L. ;
Tom, Robby Z. ;
Riedl, Isabelle ;
Massart, Julie ;
Bjornholm, Marie ;
Gilbert, Marc ;
Chibalin, Alexander V. ;
Zierath, Juleen R. .
JOURNAL OF LIPID RESEARCH, 2017, 58 (12) :2324-2333
[5]   Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans [J].
Bergman, B. C. ;
Hunerdosse, D. M. ;
Kerege, A. ;
Playdon, M. C. ;
Perreault, L. .
DIABETOLOGIA, 2012, 55 (04) :1140-1150
[6]   Metabolic Regulation by p53 Family Members [J].
Berkers, Celia R. ;
Maddocks, Oliver D. K. ;
Cheung, Eric C. ;
Mor, Inbal ;
Vousden, Karen H. .
CELL METABOLISM, 2013, 18 (05) :617-633
[7]  
BONI LT, 1985, J BIOL CHEM, V260, P819
[8]   Dual activities of ritanserin and R59022 as DGKα inhibitors and serotonin receptor antagonists [J].
Boroda, Salome ;
Niccum, Maria ;
Raje, Vidisha ;
Purow, Benjamin W. ;
Harris, Thurl E. .
BIOCHEMICAL PHARMACOLOGY, 2017, 123 :29-39
[9]   Diacylglycerol kinase θ couples farnesoid X receptor-dependent bile acid signalling to Akt activation and glucose homoeostasis in hepatocytes [J].
Cai, Kai ;
Sewer, Marion B. .
BIOCHEMICAL JOURNAL, 2013, 454 :267-274
[10]   Molecular cloning and characterization of the human diacylglycerol kinase β (DGKβ) gene -: Alternative splicing generates DGKβ isotypes with different properties [J].
Caricasole, A ;
Bettini, E ;
Sala, C ;
Roncarati, R ;
Kobayashi, N ;
Caldara, F ;
Goto, K ;
Terstappen, GC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (07) :4790-4796