Lp-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle

被引:72
|
作者
Geissert, Matthias [1 ]
Heck, Horst [1 ]
Hieber, Matthias [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2006年 / 596卷
关键词
D O I
10.1515/CRELLE.2006.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the equations of Navier-Stokes in the exterior of a rotating domain. It is shown that, after rewriting the problem on a fixed domain W, the solution of the corresponding Stokes equation is governed by a C-0-semigroup on L-sigma(p)(Omega), 1 < p < infinity, with generator Au = P(Delta u + Mx (.) del u - Mu). Moreover, for p >= n and initial data u(0) epsilon L-sigma(p)(Omega), we prove the existence of a unique local mild solution to the Navier-Stokes problem.
引用
收藏
页码:45 / 62
页数:18
相关论文
共 50 条
  • [1] L-p-THEORY OF THE NAVIER-STOKES FLOW IN THE EXTERIOR OF A MOVING OR ROTATING OBSTACLE
    Geissert, M.
    Hieber, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2007, 76 (01): : 69 - 76
  • [2] The Navier-Stokes equations in exterior Lipschitz domains: Lp-theory
    Tolksdorf, Patrick
    Watanabe, Keiichi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (07) : 5765 - 5801
  • [3] Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle
    Cumsille, P
    Tucsnak, M
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (05) : 595 - 623
  • [4] An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle
    Hishida, T
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (04) : 307 - 348
  • [5] An Existence Theorem¶for the Navier-Stokes Flow¶in the Exterior of a Rotating Obstacle
    Toshiaki Hishida
    Archive for Rational Mechanics and Analysis, 1999, 150 : 307 - 348
  • [6] GLOBAL EXISTENCE FOR THE 2D NAVIER-STOKES FLOW IN THE EXTERIOR OF A MOVING OR ROTATING OBSTACLE
    Shao, Shuguang
    Wang, Shu
    Xu, Wen-Qing
    Han, Bin
    KINETIC AND RELATED MODELS, 2016, 9 (04) : 767 - 776
  • [7] Lp-theory for Stokes and Navier-Stokes equations with Navier boundary condition
    Amrouche, Cherif
    Rejaiba, Ahmed
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) : 1515 - 1547
  • [8] An Lp-theory for fractional stationary Navier-Stokes equations
    Jarrin, Oscar
    Vergara-Hermosilla, Gaston
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (02) : 859 - 898
  • [9] The Navier-Stokes flow in the exterior of rotating obstacles
    Hieber, M
    Nonlinear Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HERBERT AMANN, MICHEL CHIPOT AND JOACHIM ESCHER, 2005, 64 : 243 - 251
  • [10] Lp-THEORY FOR THE NAVIER-STOKES EQUATIONS WITH PRESSURE BOUNDARY CONDITIONS
    Amrouche, Cherif
    Seloula, Nour El Houda
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05): : 1113 - 1137