Meta-theorems on inequalities for scalar fuzzy set cardinalities

被引:36
作者
De Baets, B.
Janssens, S.
De Meyer, H.
机构
[1] Univ Ghent, Dept Appl Math Biometr & Proc Control, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
Bell inequalities; conjunctor; quasi-copula; Frank t-norm; scalar cardinality; sigma count; simple matching coefficient; Jaccard coefficient;
D O I
10.1016/j.fss.2006.01.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present meta-theorems stating general conditions ensuring that certain inequalities for cardinalities of ordinary sets are preserved under fuzzification, when adopting a scalar approach to fuzzy set cardinality. The conditions pertain to the commutative conjunctor used for modelling fuzzy set intersection. In particular, this conjunctor should fulfil a number of Bell-type inequalities. The advantage of these meta-theorems is that repetitious calculations can be avoided. This is illustrated in the demonstration of the Lukasiewicz transitivity of fuzzified versions of the simple matching coefficient and the Jaccard coefficient, or equivalently, the triangle inequality of the corresponding dissimilarity measures. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1463 / 1476
页数:14
相关论文
共 35 条
[1]  
Bell JS., 1964, PHYS PHYS FIZIKA, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[2]  
BLANCHARD N, 1982, FUZZY INFORM DECISIO, P149
[3]   Towards general measures of comparison of objects [J].
BouchonMeunier, B ;
Rifqi, M ;
Bothorel, S .
FUZZY SETS AND SYSTEMS, 1996, 84 (02) :143-153
[4]   Scalar cardinalities of finite fuzzy sets for t-norms and t-conorms [J].
Casasnovas, J ;
Torrens, J .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2003, 11 (05) :599-614
[5]  
Casasnovas J, 2002, ADV SOFT COMP, P92
[6]   Transitivity-preserving fuzzification schemes for cardinality-based similarity measures [J].
De Baets, B ;
De Meyer, H .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 160 (03) :726-740
[7]   On rational cardinality-based inclusion measures [J].
De Baets, B. ;
De Meyer, H. ;
Naessens, H. .
2002, Elsevier (128)
[8]   Metrics and T-equalities [J].
De Baets, B ;
Mesiar, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (02) :531-547
[10]   A probabilistic definition of a nonconvex fuzzy cardinality [J].
Delgado, Miguel ;
Sanchez, Daniel ;
Martin-Bautista, Maria J. ;
Vila, Maria Amparo .
FUZZY SETS AND SYSTEMS, 2002, 126 (02) :177-190