Numerical Study of Solutions of the 3D Generalized Kadomtsev-Petviashvili Equations for Long Times

被引:2
作者
Hamidouche, E. [3 ]
Mammeri, Y. [1 ]
Mefire, S. M. [2 ]
机构
[1] Univ Sci & Tech Lille Flandres Artois, CNRS, Lab Math Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
[2] Univ Picardie, Lab Amienois Math Fondamentale & Appl, CNRS, UMR 6140, F-80039 Amiens 1, France
[3] Univ Paris 11, CNRS, UMR 8628, Math Lab, F-91405 Orsay, France
关键词
3D-KP equations; spectral method; predictor-corrector method; dispersion; blow-up; soliton; transverse instability; SOLITARY WAVES; INSTABILITY;
D O I
10.4208/cicp.2009.v6.p1022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From a spectral method combined with a predictor-corrector scheme, we numerically study the behavior in time of solutions of the three-dimensional generalized Kadomtsev-Petviashvili equations. In a systematic way, the dispersion, the blow-up in finite time, the solitonic behavior and the transverse instabilities are numerically inspected.
引用
收藏
页码:1022 / 1062
页数:41
相关论文
共 25 条
[1]   On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation [J].
Alexander, JC ;
Pego, RL ;
Sachs, RL .
PHYSICS LETTERS A, 1997, 226 (3-4) :187-192
[3]  
Bourgain J., 1993, Geom. Funct. Anal, V3, P315, DOI [10.1007/BF01896259, DOI 10.1007/BF01896259]
[4]   Solitary waves of generalized Kadomtsev-Petviashvili equations [J].
deBouard, A ;
Saut, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :211-236
[5]   Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves [J].
DeBouard, A ;
Saut, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (05) :1064-1085
[6]  
DEBOUARD A, 1995, MATH PROBLEMS THEORY, V200, P75
[7]   CAUCHY-PROBLEM FOR THE GENERALIZED KADOMTSEV-PETVIASHVILI EQUATION [J].
FAMINSKII, AV .
SIBERIAN MATHEMATICAL JOURNAL, 1992, 33 (01) :133-143
[8]   ON THE SOLVABILITY OF THE N-WAVE, DAVEY-STEWARTSON AND KADOMTSEV-PETVIASHVILI EQUATIONS [J].
FOKAS, AS ;
SUNG, LY .
INVERSE PROBLEMS, 1992, 8 (05) :673-708
[9]  
HAMIDOUCHE E, 2001, THESIS U PARIS SUD 1
[10]   Local solution for the Kadomtsev-Petviashvili equation in R(2) [J].
Isaza, P ;
Mejia, J ;
Stallbohm, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (02) :566-587