Determination of Control Requirements to Impose on CIG for Ensuring Frequency Stability of Low Inertia Power Systems

被引:8
|
作者
Vega, Benjamin [1 ]
Rahmann, Claudia [1 ]
Alvarez, Ricardo [2 ]
Vittal, Vijay [3 ]
机构
[1] Univ Chile, Dept Elect Engn, Santiago 8320000, Chile
[2] Univ Tecn Federico Santa Maria, Dept Elect Engn, Santiago 8940000, Chile
[3] Arizona State Univ, Dept Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
Power system stability; Frequency control; Frequency conversion; Power system dynamics; Voltage control; Stability criteria; Renewable energy sources; CIG; grid-following converter; grid-forming converter; frequency stability; low-inertia systems; PLL; renewable energy resources; CONVERTER INTERFACED GENERATION; VIRTUAL INERTIA; IMPACT; WIND; SYNCHRONIZATION; IMPLEMENTATION; PLACEMENT; INVERTERS; PLANTS; PLL;
D O I
10.1109/ACCESS.2022.3169489
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Power systems around the globe are undergoing a transformation characterized by a massive deployment of converter-interfaced generation (CIG) to effectively combat climate change. However, achieving a seamless transition from current power systems dominated by synchronous generators (SGs) to future ones with high levels of CIG requires overcoming several technical challenges. From a frequency stability perspective, reduced system inertia increases the frequency nadir after a loss of generation thereby endangering frequency stability. In this context, this paper proposes a novel methodology for determining control requirements to impose on CIG as their penetration in the network increases. Results of a case study based on the Chilean grid projected for the year 2046 show that, if only grid-following converters without frequency control capability are deployed, a maximum CIG penetration level of 75% can be achieved without threatening frequency stability. The Chilean system can reach a 99% CIG penetration, provided that the remaining CIGs are deployed in grid-following with frequency support capability. Finally, we show that if the last SG is replaced with a grid-forming converter, the system can still sustain frequency stability and exhibits a good dynamic performance. These results demonstrate that, at least from a frequency stability viewpoint, achieving a 100% based CIG system is technically possible. The proposed methodology can be used by energy regulators to define the control requirements necessary to impose on CIG for achieving renewable energy targets in a secure way. Although the obtained results are particular for the Chilean system, the proposed methodology can be applied to any power system.
引用
收藏
页码:44891 / 44908
页数:18
相关论文
共 50 条
  • [1] Analysis and Control of Frequency Stability in Low-Inertia Power Systems: A Review
    He, Changjun
    Geng, Hua
    Rajashekara, Kaushik
    Chandra, Ambrish
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (12) : 2363 - 2383
  • [2] Control of Low-Inertia Power Systems
    Dorfler, Florian
    Gross, Dominic
    ANNUAL REVIEW OF CONTROL ROBOTICS AND AUTONOMOUS SYSTEMS, 2023, 6 : 415 - 445
  • [3] Frequency Stability Using MPC-Based Inverter Power Control in Low-Inertia Power Systems
    Ademola-Idowu, Atinuke
    Zhang, Baosen
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (02) : 1628 - 1637
  • [4] Effect of inertia heterogeneity on frequency dynamics of low-inertia power systems
    Adrees, Atia
    Milanovic, J. V.
    Mancarella, Pierluigi
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2019, 13 (14) : 2951 - 2958
  • [5] MPC-Based Fast Frequency Control of Voltage Source Converters in Low-Inertia Power Systems
    Stanojev, Ognjen
    Markovic, Uros
    Aristidou, Petros
    Hug, Gabriela
    Callaway, Duncan
    Vrettos, Evangelos
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (04) : 3209 - 3220
  • [6] Frequency Stability Enhancement for Low Inertia Systems using Synthetic Inertia of Wind Power
    Ha Thi Nguyen
    Yang, Guangya
    Nielsen, Arne Hejde
    Jensen, Peter Hojgaard
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [7] Methodological Approach for Defining Frequency Related Grid Requirements in Low-Carbon Power Systems
    Rahmann, Claudia
    Chamas, Sebastian Ignacio
    Alvarez, Ricardo
    Chavez, Hector
    Ortiz-Villalba, Diego
    Shklyarskiy, Yaroslav
    IEEE ACCESS, 2020, 8 : 161929 - 161942
  • [8] Frequency control challenges and potential countermeasures in future low-inertia power systems: A review
    Shazon, Md. Nahid Haque
    Nahid-Al-Masood
    Jawad, Atik
    ENERGY REPORTS, 2022, 8 : 6191 - 6219
  • [9] Assessment of Demand Response Impact on the Frequency Stability of Low-Inertia Power Systems
    Afonso, Rodrigo da Cunha
    Lopes, Joao Abel Pecas
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [10] The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems
    Gonzalez-Inostroza, Pablo
    Rahmann, Claudia
    Alvarez, Ricardo
    Haas, Jannik
    Nowak, Wolfgang
    Rehtanz, Christian
    SUSTAINABILITY, 2021, 13 (10)