Magnetic polarization measurements of the multi-modal plasma response to 3D fields in the EAST tokamak

被引:13
作者
Logan, N. C. [1 ]
Cui, L. [1 ]
Wang, H. [2 ]
Sun, Y. [2 ]
Gu, S. [2 ]
Li, G. [2 ]
Nazikian, R. [1 ]
Paz-Soldan, C. [3 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
[3] Gen Atom, San Diego, CA 92186 USA
基金
中国国家自然科学基金;
关键词
tokamak; resonant magnetic perturbations; edge localized modes; GPEC; reluctance; ERROR FIELD; RECONSTRUCTION; AMPLIFICATION; MODES;
D O I
10.1088/1741-4326/aac129
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n = 2 fields in the same plasma for which the n = 1 responses are well synchronized. Neither the maximum radial nor the maximum poloidal field response to n = fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n = 1 and n = 2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.
引用
收藏
页数:12
相关论文
共 58 条
[1]   Resistive wall modes and error field amplification [J].
Boozer, AH .
PHYSICS OF PLASMAS, 2003, 10 (05) :1458-1467
[2]   Error field amplification and rotation damping in tokamak plasmas [J].
Boozer, AH .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5059-5061
[3]   Non-axisymmetric magnetic fields and toroidal plasma confinement [J].
Boozer, Allen H. .
NUCLEAR FUSION, 2015, 55 (02)
[4]   CONTROL OF NONAXISYMMETRIC MAGNETIC FIELD PERTURBATIONS IN TOKAMAKS [J].
Boozer, Allen H. .
FUSION SCIENCE AND TECHNOLOGY, 2011, 59 (03) :561-571
[5]   Reactor-relevant quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields [J].
Burrell, K. H. ;
Garofalo, A. M. ;
Solomon, W. M. ;
Fenstermacher, M. E. ;
Osborne, T. H. ;
Park, J-K ;
Schaffer, M. J. ;
Snyder, P. B. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[6]   The energy confinement response of DIII-D plasmas to resonant magnetic perturbations [J].
Cui, L. ;
Nazikian, R. ;
Grierson, B. A. ;
Belli, E. A. ;
Evans, T. E. ;
Logan, N. C. ;
Orlov, D. M. ;
Smith, S. P. ;
Staebler, G. M. ;
Snyder, P. B. .
NUCLEAR FUSION, 2017, 57 (11)
[7]   Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices [J].
Evans, T. E. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (12)
[8]   ELM mitigation techniques [J].
Evans, T. E. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S11-S18
[9]   Calculations of two-fluid linear response to non-axisymmetric fields in tokamaks [J].
Ferraro, N. M. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[10]   Observation of Plasma Rotation Driven by Static Nonaxisymmetric Magnetic Fields in a Tokamak [J].
Garofalo, A. M. ;
Burrell, K. H. ;
DeBoo, J. C. ;
deGrassie, J. S. ;
Jackson, G. L. ;
Lanctot, M. ;
Reimerdes, H. ;
Schaffer, M. J. ;
Solomon, W. M. ;
Strait, E. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (19)