Finite Element Techniques for Removing the Mixture of Gaussian and Impulsive Noise

被引:9
作者
Lamichhane, Bishnu P. [1 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Ctr Math & Applicat, Canberra, ACT 0200, Australia
基金
英国工程与自然科学研究理事会;
关键词
Delaunay triangulation; finite element interpolation and smoothing; impulsive and Gaussian noise; scattered data interpolation; Voronoi diagram; APPROXIMATION; SUPPRESSION; ALGORITHM; IMAGES;
D O I
10.1109/TSP.2009.2016272
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The finite element method has become a very powerful and popular tool to solve boundary value problems coming from science and engineering. Here, we consider a scattered data fitting method based on the finite element method and apply the method to remove the mixture of Gaussian and impulsive noise from an image. Numerical results show the performance of the approach.
引用
收藏
页码:2538 / 2547
页数:10
相关论文
共 40 条
[1]   Effective impulse detector based on rank-order criteria [J].
Aizenberg, I ;
Butakoff, C .
IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (03) :363-366
[2]   Scattered data interpolation methods for electronic imaging systems: a survey [J].
Amidror, I .
JOURNAL OF ELECTRONIC IMAGING, 2002, 11 (02) :157-176
[3]  
[Anonymous], IMAGE PROCESSING ANA
[4]  
ATLAS I, 1998, COMPUTAT TECH APPL C, P289
[5]  
AUBERT G, 2006, PT APPL MATH SCI, V147
[6]  
Aurenhammer F, 2000, HANDBOOK OF COMPUTATIONAL GEOMETRY, P201, DOI 10.1016/B978-044482537-7/50006-1
[7]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[8]   Impulsive noise suppression from images by using Anfis interpolant and lillietest [J].
Besdok, E .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (16) :2423-2433
[9]  
BRAESS D, 2001, FINITE ELEMENT THEOR
[10]  
Brenner S., 2007, The Mathematical Theory of Finite Element Method, V15