Multigrid methods for the symmetric interior penalty method on graded meshes

被引:31
作者
Brenner, S. C. [1 ,2 ]
Cui, J. [1 ]
Sung, L. -Y [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
symmetric interior penalty method; graded meshes; multigrid; FINITE-ELEMENT-METHOD; BOUNDARY-VALUE-PROBLEMS; DISCONTINUOUS GALERKIN METHODS; 2-DIMENSIONAL CURL-CURL; ELLIPTIC-EQUATIONS; V-CYCLE; CONVERGENCE; ELASTICITY; DOMAINS; APPROXIMATIONS;
D O I
10.1002/nla.630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The symmetric interior penalty (SIP) method on graded meshes and its fast solution by multigrid methods are studied in this paper. We obtain quasi-optimal error estimates in both the energy norm and the L-2 norm for the SIP method, and prove uniform convergence of the W-cycle multigrid algorithm for the resulting discrete problem. The performance of these methods is illustrated by numerical results. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:481 / 501
页数:21
相关论文
共 39 条
[1]  
[Anonymous], 1994, De Gruyter Exp. Math.
[2]  
[Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
[3]  
Apel T, 1996, MATH METHOD APPL SCI, V19, P63, DOI 10.1002/(SICI)1099-1476(19960110)19:1<63::AID-MMA764>3.0.CO
[4]  
2-S
[5]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[6]   A family of Discontinuous Galerkin finite elements for the Reissner-Mindlin plate [J].
Arnold, DN ;
Brezzi, F ;
Marini, LD .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :25-45
[7]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[8]   FINITE ELEMENT METHOD FOR DOMAINS WITH CORNERS [J].
BABUSKA, I .
COMPUTING, 1970, 6 (3-4) :264-&
[9]   DIRECT AND INVERSE ERROR-ESTIMATES FOR FINITE-ELEMENTS WITH MESH REFINEMENTS [J].
BABUSKA, I ;
KELLOGG, RB ;
PITKARANTA, J .
NUMERISCHE MATHEMATIK, 1979, 33 (04) :447-471
[10]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5