Semantic Textual Similarity on Brazilian Portuguese: An approach based on language-mixture models

被引:2
作者
Silva, A. [1 ]
Lozkins, A. [2 ]
Bertoldi, L. R. [1 ]
Rigo, S. [1 ]
Bure, V. M. [2 ]
机构
[1] Univ Vale Rio dos Sinos, 950 Av Unisinos, BR-93020190 Sao Leopoldo, RS, Brazil
[2] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
来源
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA | 2019年 / 15卷 / 02期
关键词
Semantic Textual Similarity; natural language processing; computational linguistics; ontologies;
D O I
10.21638/11702/spbu10.2019.207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The literature describes the Semantic Textual Similarity (STS) area as a fundamental part of many Natural Language Processing (NLP) tasks. The STS approaches are dependent on the availability of lexical-semantic resources. There are several efforts to improve the lexicalsemantics resources for the English language, and the state-of-art report a large amount of application for this language. Brazilian Portuguese linguistics resources, when compared with English ones, do not have the same availability regarding relation and contents, generation a loss of precision in STS tasks. Therefore, the current work presents an approach that combines Brazilian Portuguese and English lexical-semantics ontology resources to reach all potential of both language linguistic relations, to generate a language-mixture model to measure STS. We evaluated the proposed approach with a well-known and respected Brazilian Portuguese STS dataset, which brought to light some considerations about mixture models and their relations with ontology language semantics.
引用
收藏
页码:235 / 244
页数:10
相关论文
共 24 条
[1]  
Alves AO, 2016, LINGUAMATICA, V8, P43
[2]  
[Anonymous], 2016, ABS160502276 CORR
[3]  
[Anonymous], 2016, P 10 INT WORKSH SEM, DOI DOI 10.18653/V1/S16-1089
[4]  
Barbosa L., 2016, PROPOR INT C COMP PR
[5]   Xart: Discovery of correlated arguments of n-ary relations in text [J].
Berrahou, Soumia Lilia ;
Buche, Patrice ;
Dibie, Juliette ;
Roche, Mathieu .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 73 :115-124
[6]  
Cer D., 2017, P 11 INT WORKSH SEM, P1, DOI DOI 10.18653/V1/S17-2001
[7]   A semantic similarity measure integrating multiple conceptual relationships for web service discovery [J].
Chen, Fuzan ;
Lu, Chenghua ;
Wu, Harris ;
Li, Minqiang .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 67 :19-31
[8]   Combining sentence similarities measures to identify paraphrases [J].
Ferreira, Rafael ;
Cavalcanti, George D. C. ;
Freitas, Fred ;
Lins, Rafael Dueire ;
Simske, Steven J. ;
Riss, Marcelo .
COMPUTER SPEECH AND LANGUAGE, 2018, 47 :59-73
[9]   Assessing sentence similarity through lexical, syntactic and semantic analysis [J].
Ferreira, Rafael ;
Lins, Rafael Dueire ;
Simske, Steven J. ;
Freitas, Fred ;
Riss, Marcelo .
COMPUTER SPEECH AND LANGUAGE, 2016, 39 :1-28
[10]  
Fialho P., 2016, MEDICAO SIMILARIDADE