Photonic Architecture for Scalable Quantum Information Processing in Diamond

被引:186
作者
Nemoto, Kae [1 ]
Trupke, Michael [2 ]
Devitt, Simon J. [1 ]
Stephens, Ashley M. [1 ]
Scharfenberger, Burkhard [1 ]
Buczak, Kathrin [2 ]
Noebauer, Tobias [2 ]
Everitt, Mark S. [1 ]
Schmiedmayer, Joerg [2 ]
Munro, William J. [1 ,3 ]
机构
[1] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[2] TU Wien, Vienna Ctr Quantum Sci & Technol, Atominst, A-1020 Vienna, Austria
[3] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
基金
奥地利科学基金会;
关键词
SPIN COHERENCE; NUCLEAR-SPIN; COLOR-CENTER; DOT SPIN; STATE; ENTANGLEMENT; CAVITY; COMPUTATION; REGISTER; COMPUTER;
D O I
10.1103/PhysRevX.4.031022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information processing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively charged nitrogen vacancy center in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.
引用
收藏
页数:12
相关论文
共 78 条
[21]   Room-temperature entanglement between single defect spins in diamond [J].
Dolde, F. ;
Jakobi, I. ;
Naydenov, B. ;
Zhao, N. ;
Pezzagna, S. ;
Trautmann, C. ;
Meijer, J. ;
Neumann, P. ;
Jelezko, F. ;
Wrachtrup, J. .
NATURE PHYSICS, 2013, 9 (03) :139-143
[22]   Scalable photonic quantum computation through cavity-assisted interactions [J].
Duan, LM ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :127902-1
[23]   Controlling cavity reflectivity with a single quantum dot [J].
Englund, Dirk ;
Faraon, Andrei ;
Fushman, Ilya ;
Stoltz, Nick ;
Petroff, Pierre ;
Vuckovic, Jelena .
NATURE, 2007, 450 (7171) :857-861
[24]   Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity [J].
Englund, Dirk ;
Shields, Brendan ;
Rivoire, Kelley ;
Hatami, Fariba ;
Vuckovic, Jelena ;
Park, Hongkun ;
Lukin, Mikhail D. .
NANO LETTERS, 2010, 10 (10) :3922-3926
[25]   High-Sensitivity Magnetometry Based on Quantum Beats in Diamond Nitrogen-Vacancy Centers [J].
Fang, Kejie ;
Acosta, Victor M. ;
Santori, Charles ;
Huang, Zhihong ;
Itoh, Kohei M. ;
Watanabe, Hideyuki ;
Shikata, Shinichi ;
Beausoleil, Raymond G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (13)
[26]  
Faraon A, 2011, NAT PHOTONICS, V5, P301, DOI [10.1038/NPHOTON.2011.52, 10.1038/nphoton.2011.52]
[27]   Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond [J].
Felton, S. ;
Edmonds, A. M. ;
Newton, M. E. ;
Martineau, P. M. ;
Fisher, D. ;
Twitchen, D. J. ;
Baker, J. M. .
PHYSICAL REVIEW B, 2009, 79 (07)
[28]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[29]  
Fowler AG, 2009, QUANTUM INF COMPUT, V9, P721
[30]  
Fu Kai-Mei C., 2009, PHYS REV LETT, V103