Photonic Architecture for Scalable Quantum Information Processing in Diamond

被引:185
作者
Nemoto, Kae [1 ]
Trupke, Michael [2 ]
Devitt, Simon J. [1 ]
Stephens, Ashley M. [1 ]
Scharfenberger, Burkhard [1 ]
Buczak, Kathrin [2 ]
Noebauer, Tobias [2 ]
Everitt, Mark S. [1 ]
Schmiedmayer, Joerg [2 ]
Munro, William J. [1 ,3 ]
机构
[1] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[2] TU Wien, Vienna Ctr Quantum Sci & Technol, Atominst, A-1020 Vienna, Austria
[3] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
基金
奥地利科学基金会;
关键词
SPIN COHERENCE; NUCLEAR-SPIN; COLOR-CENTER; DOT SPIN; STATE; ENTANGLEMENT; CAVITY; COMPUTATION; REGISTER; COMPUTER;
D O I
10.1103/PhysRevX.4.031022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information processing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively charged nitrogen vacancy center in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.
引用
收藏
页数:12
相关论文
共 78 条
[1]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[2]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[3]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[4]   Fault Tolerant Quantum Computation with Very High Threshold for Loss Errors [J].
Barrett, Sean D. ;
Stace, Thomas M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (20)
[5]   Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond [J].
Batalov, A. ;
Jacques, V. ;
Kaiser, F. ;
Siyushev, P. ;
Neumann, P. ;
Rogers, L. J. ;
McMurtrie, R. L. ;
Manson, N. B. ;
Jelezko, F. ;
Wrachtrup, J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[6]   Brokered graph-state quantum computation [J].
Benjamin, Simon C. ;
Browne, Daniel E. ;
Fitzsimons, Joe ;
Morton, John J. L. .
NEW JOURNAL OF PHYSICS, 2006, 8
[7]   Prospects for measurement-based quantum computing with solid state spins [J].
Benjamin, Simon C. ;
Lovett, Brendon W. ;
Smith, Jason M. .
LASER & PHOTONICS REVIEWS, 2009, 3 (06) :556-574
[8]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[9]   Ultrasmooth microfabricated mirrors for quantum information [J].
Biedermann, G. W. ;
Benito, F. M. ;
Fortier, K. M. ;
Stick, D. L. ;
Loyd, T. K. ;
Schwindt, P. D. D. ;
Nakakura, C. Y. ;
Jarecki, R. L., Jr. ;
Blain, M. G. .
APPLIED PHYSICS LETTERS, 2010, 97 (18)
[10]   CNOT and Bell-state analysis in the weak-coupling cavity QED regime [J].
Bonato, Cristian ;
Haupt, Florian ;
Oemrawsingh, Sumant S. R. ;
Gudat, Jan ;
Ding, Dapeng ;
van Exter, Martin P. ;
Bouwmeester, Dirk .
PHYSICAL REVIEW LETTERS, 2010, 104 (16)