A new integrable anisotropic oscillator on the two-dimensional sphere and the hyperbolic plane

被引:15
作者
Ballesteros, Angel [1 ]
Blasco, Alfonso [1 ]
Herranz, Francisco J. [1 ]
Musso, Fabio [2 ]
机构
[1] Univ Burgos, Dept Fis, E-09001 Burgos, Spain
[2] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
关键词
anisotropic oscillator; integrable systems; Lie-Poisson algebras; curvature; Poincar disk; integrable deformation; Higgs oscillator; N-DIMENSIONAL SPHERE; DYNAMICAL SYMMETRIES; SPACES; CONTRACTIONS; SPACETIMES; ALGEBRAS; GEOMETRY; SYSTEMS;
D O I
10.1088/1751-8113/47/34/345204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new integrable generalization to the two-dimensional (2D) sphere, S-2, and to the hyperbolic space, H-2, of the 2D Euclidean anisotropic oscillator Hamiltonian with Rosochatius (centrifugal) terms is presented, and its curved integral of motion is shown to be quadratic in the momenta. To construct such a new integrable Hamiltonian, H-kappa, we will use a group theoretical approach in which the curvature, kappa, of the underlying space will be treated as an additional (contraction) parameter, and we will make extensive use of projective coordinates and their associated phase spaces. When the oscillator parameters Omega(1) and Omega(2) are such that Omega(2)= 4 Omega(1), the system turns out to be the well-known superintegrable 1: 2 oscillator on S-2 and H-2. Nevertheless, numerical integration of the trajectories of H-kappa suggests that for other values of the parameters Omega(1) and Omega(2), the system is not superintegrable. In this way, we support the conjecture that for each commensurate, and thus superintegrable, m: n Euclidean oscillator there exists a two-parametric family of curved integrable oscillators that turns out to be superintegrable only when the parameters are tuned to the m: n commensurability condition.
引用
收藏
页数:21
相关论文
共 26 条
[1]  
[Anonymous], 1990, INTEGRABLE SYSTEMS C, DOI DOI 10.1007/978-3-0348-9257-5
[2]   Maximal superintegrability on N-dimensional curved spaces [J].
Ballesteros, A ;
Herranz, FJ ;
Santander, M ;
Sanz-Gil, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :L93-L99
[3]   QUANTUM STRUCTURE OF THE MOTION GROUPS OF THE 2-DIMENSIONAL CAYLEY-KLEIN GEOMETRIES [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21) :5801-5823
[4]   The anisotropic oscillator on the 2D sphere and the hyperbolic plane [J].
Ballesteros, Angel ;
Herranz, Francisco J. ;
Musso, Fabio .
NONLINEARITY, 2013, 26 (04) :971-990
[5]   Maximal superintegrability of the generalized Kepler-Coulomb system on N-dimensional curved spaces [J].
Ballesteros, Angel ;
Herranz, Francisco J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
[6]   A non-linear oscillator with quasi-harmonic behaviour:: two- and n-dimensional oscillators [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M ;
Senthilvelan, M .
NONLINEARITY, 2004, 17 (05) :1941-1963
[7]  
DOUBROVINE B, 1982, GEOMETRIE CONT METHO
[8]   THE JORDAN-SCHWINGER REPRESENTATIONS OF CAYLEY-KLEIN GROUPS .1. THE ORTHOGONAL GROUPS [J].
GROMOV, NA ;
MANKO, VI .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (05) :1047-1053
[9]   Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry [J].
Herranz, FJ ;
Ortega, R ;
Santander, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (24) :4525-4551
[10]  
Herranz FJ, 2004, CRM PROC & LECT NOTE, V37, P75