Numerical Analysis and Recursive Compensation of Position Deviation for a Sub-Millimeter Resolution OFDR

被引:18
作者
Cheng, Yueying [1 ,2 ,3 ]
Luo, Mingming [1 ,2 ,3 ]
Liu, Jianfei [1 ,2 ,3 ]
Luan, Nannan [1 ,2 ,3 ]
机构
[1] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[2] Tianjin Key Lab Elect Mat & Devices, Tianjin 300401, Peoples R China
[3] Hebei Key Lab Adv Laser Technol & Equipment, Tianjin 300401, Peoples R China
关键词
optical frequency domain reflectometry; position deviation compensation; sub-millimeter spatial resolution; FREQUENCY-DOMAIN REFLECTOMETRY; OPTICAL-FIBER; RANGE; LASER;
D O I
10.3390/s20195540
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We analyze the source of the position deviation and propose a demodulation recursive compensation algorithm to ensure a sub-millimeter resolution in improved optical frequency domain reflectometry. The position deviation between the geometric path and optical path changes with the temperature or strain, due to the elastic-optic and thermal-optic effects. It accumulates along the fiber and becomes large enough to affect the spectral correlation between the measured and reference spectra at the fiber end. The proposed algorithm compensates for the position deviation of each measuring point and aligns the measured spectra with its reference. The numerical and experimental results both reveal that the signal-to-noise ratio of the correlation is improved doubly and a sub-millimeter spatial resolution becomes available at a 30 m fiber end. The recursive compensation algorithm helps to restrain the correlation degeneration at the fiber end and promises an effective approach to a sub-millimeter resolution in optical frequency domain reflectometry.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 19 条
  • [1] Incoherent optical frequency domain reflectometry based on a Kerr phase-interrogator
    Baker, C.
    Lu, Y.
    Song, J.
    Bao, X.
    [J]. OPTICS EXPRESS, 2014, 22 (13): : 15370 - 15375
  • [2] Long Measurement Range OFDR Beyond Laser Coherence Length
    Ding, Zhenyang
    Yao, X. Steve
    Liu, Tiegen
    Du, Yang
    Liu, Kun
    Han, Qun
    Meng, Zhuo
    Jiang, Junfeng
    Chen, Hongxin
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (02) : 202 - 205
  • [3] 5-MM-RESOLUTION OPTICAL-FREQUENCY-DOMAIN REFLECTOMETRY USING A CODED PHASE-REVERSAL MODULATOR
    DOLFI, DW
    NAZARATHY, M
    NEWTON, SA
    [J]. OPTICS LETTERS, 1988, 13 (08) : 678 - 680
  • [4] OPTICAL FREQUENCY-DOMAIN REFLECTOMETRY IN SINGLE-MODE FIBER
    EICKHOFF, W
    ULRICH, R
    [J]. APPLIED PHYSICS LETTERS, 1981, 39 (09) : 693 - 695
  • [5] Enhancement of the Performance and Data Processing Rate of an Optical Frequency Domain Reflectometer Distributed Sensing System Using A Limited Swept Wavelength Range
    Feng, Kunpeng
    Cui, Jiwen
    Jin, Yihua
    Sun, Xun
    Jiang, Dong
    Dang, Hong
    Niu, Yizhao
    Tan, Jiubin
    [J]. SENSORS, 2018, 18 (10)
  • [6] Improvement of the strain measurable range of an OFDR based on local similar characteristics of a Rayleigh scattering spectrum
    Feng, Kunpeng
    Cui, Jiwen
    Jiang, Dong
    Dang, Hong
    Jin, Yihua
    Sun, Xun
    Niu, Yizhao
    Tan, Jiubin
    [J]. OPTICS LETTERS, 2018, 43 (14) : 3293 - 3296
  • [7] High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter
    Froggatt, M
    Moore, J
    [J]. APPLIED OPTICS, 1998, 37 (10): : 1735 - 1740
  • [8] Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry
    Geng, JH
    Spiegelberg, C
    Jiang, SB
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (09) : 1827 - 1829
  • [9] OPTICAL-FIBER DIAGNOSIS USING OPTICAL-FREQUENCY-DOMAIN REFLECTOMETRY
    GHAFOORISHIRAZ, H
    OKOSHI, T
    [J]. OPTICS LETTERS, 1985, 10 (03) : 160 - 162
  • [10] FAULT LOCATION IN OPTICAL FIBERS USING OPTICAL FREQUENCY-DOMAIN REFLECTOMETRY
    GHAFOORISHIRAZ, H
    OKOSHI, T
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1986, 4 (03) : 316 - 322