Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions

被引:66
作者
Carrozza, Sylvain [1 ,2 ]
Oriti, Daniele [2 ]
Rivasseau, Vincent [1 ]
机构
[1] Univ Paris 11, CNRS, Lab Phys Theor, UMR 8627, F-91405 Orsay, France
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
关键词
BUBBLE DIVERGENCES; QUANTUM-GRAVITY; 1/N EXPANSION; VERTEX; UNIVERSES;
D O I
10.1007/s00220-014-1954-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We tackle the issue of renormalizability for Tensorial Group Field Theories (TGFT) including gauge invariance conditions, with the rigorous tool of multi-scale analysis, to prepare the ground for applications to quantum gravity models. In the process, we define the appropriate generalization of some key QFT notions, including connectedness, locality and contraction of (high) subgraphs. We also define a new notion of Wick ordering, corresponding to the subtraction of (maximal) melonic tadpoles. We then consider the simplest examples of dynamical 4-dimensional TGFT with gauge invariance conditions for the Abelian U(1) case. We prove that they are super-renormalizable for any polynomial interaction.
引用
收藏
页码:603 / 641
页数:39
相关论文
共 101 条
[1]   3-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY AND GENERALIZED MATRIX MODELS [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
MODERN PHYSICS LETTERS A, 1991, 6 (12) :1133-1146
[2]   Nonperturbative quantum gravity [J].
Ambjorn, J. ;
Goerlich, A. ;
Jurkiewicz, J. ;
Loll, R. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 519 (4-5) :127-210
[3]  
[Anonymous], 2012, FDN SPACE TIME
[4]  
[Anonymous], HEPTH0611197
[5]  
[Anonymous], 1991, From Perturbative to Constructive Renormalization
[6]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[7]   CALABI-YAU MODULI SPACE, MIRROR MANIFOLDS AND SPACETIME TOPOLOGY CHANGE IN STRING THEORY [J].
ASPINWALL, PS ;
GREENE, BR ;
MORRISON, DR .
NUCLEAR PHYSICS B, 1994, 416 (02) :414-480
[8]   Improved and perfect actions in discrete gravity [J].
Bahr, Benjamin ;
Dittrich, Bianca .
PHYSICAL REVIEW D, 2009, 80 (12)
[9]   PROLEGOMENA TO A THEORY OF BIFURCATING UNIVERSES - A NONLOCAL SOLUTION TO THE COSMOLOGICAL CONSTANT PROBLEM OR LITTLE-LAMBDA GOES BACK TO THE FUTURE [J].
BANKS, T .
NUCLEAR PHYSICS B, 1988, 309 (03) :493-512
[10]   Non-commutative flux representation for loop quantum gravity [J].
Baratin, A. ;
Dittrich, B. ;
Oriti, D. ;
Tambornino, J. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (17)