Force Prediction and Tracking for Image-guided Robotic System using Neural Network Approach

被引:6
作者
Buzurovic, Ivan [1 ]
Podder, Tarun K. [1 ]
Yu, Yan [1 ]
机构
[1] Thomas Jefferson Univ, Kimmel Canc Ctr NCI Designated, Dept Radiat Oncol, Philadelphia, PA 19107 USA
来源
2008 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE - INTELLIGENT BIOMEDICAL SYSTEMS (BIOCAS) | 2008年
关键词
Robotic brachytherapy; neural network controller; force prediction; adaptive control system;
D O I
10.1109/BIOCAS.2008.4696869
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In contemporary brachytherapy procedure, needle placement at desired location is challenging due to a variety of reasons. We have designed a robot-assisted brachytherapy system to improve needle placement and seed delivery. In this paper, we have used neural network (NN) for predicting insertion force during prostate brachytherapy. The NN controller computes control inputs required for optimizing the robotic system. To verify efficacy of the control system we used in-vivo motion and force measurements during actual brachytherapy needle insertion while radioactive seeds were implanted in the prostate gland, as a real-time controller input signal. Both force prediction and force tracking processes are investigated. Information about insertion force values are used to adjust other insertion parameters like insertion velocity or acceleration in order to minimize the insertion force.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 22 条
[2]  
BUZUROVIC I, 2008, AAPM HOUST TEX US JU
[3]   Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex [J].
Chapin, JK ;
Moxon, KA ;
Markowitz, RS ;
Nicolelis, MAL .
NATURE NEUROSCIENCE, 1999, 2 (07) :664-670
[4]   Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force [J].
Davis, SP ;
Landis, BJ ;
Adams, ZH ;
Allen, MG ;
Prausnitz, MR .
JOURNAL OF BIOMECHANICS, 2004, 37 (08) :1155-1163
[5]  
Davis SP, 2002, P ANN INT IEEE EMBS, P498, DOI 10.1109/IEMBS.2002.1136914
[6]  
Dayhoff JE, 2001, CANCER, V91, P1615, DOI 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO
[7]  
2-L
[8]   Novel artificial neural network for early detection of prostate cancer [J].
Djavan, B ;
Remzi, M ;
Zlotta, A ;
Seitz, C ;
Snow, P ;
Marberger, M .
JOURNAL OF CLINICAL ONCOLOGY, 2002, 20 (04) :921-929
[9]   An update on localised prostate cancer [J].
Hodgson, D. ;
Acher, P. ;
Cahill, D. .
INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2007, 61 (02) :315-319
[10]   A system for robotic heart surgery that learns to tie knots using recurrent neural networks [J].
Mayer, Hermann ;
Gomez, Faustino ;
Wierstra, Daan ;
Nagy, Istvan ;
Knoll, Alois ;
Schmidhuber, Jurgen .
2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, :543-+