Prescribing curvature problems on the Bakry-Emery Ricci tensor of a compact manifold with boundary

被引:2
作者
Sheng, Weimin [1 ]
Yuan, Lixia [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Xinjiang Normal Univ, Dept Math, Urumqi 830054, Peoples R China
基金
中国国家自然科学基金;
关键词
k-Curvature; Bakry-Emery Ricci tensor; Complete metric; Dirichlet problem; METRIC-MEASURE-SPACES; EIGENVALUES; EQUATIONS;
D O I
10.1007/s11401-013-0809-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function. A consequence of our main result is that there exists a complete metric such that the Monge-AmpSre type equation with respect to its Bakry-Emery Ricci tensor is solvable, provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone.
引用
收藏
页码:139 / 160
页数:22
相关论文
共 21 条
[1]  
[Anonymous], ARXIVMATH0211159
[2]  
Bakry D., 1985, SEM PROB 19, V1123, P177
[3]  
Bakry Dominique, 2005, Theta Ser. Adv. Math., V4, P115
[4]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[5]  
Guan B, 2008, INT MATH RES NOTICES, V2008, P1
[6]   Existence of complete conformal metrics of negative Ricci curvature on manifolds with boundary [J].
Gursky, Matthew ;
Streets, Jeffrey ;
Warren, Micah .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (1-2) :21-43
[7]   Fully nonlinear equations on Riemannian manifolds with negative curvature [J].
Gursky, MJ ;
Viaclovsky, JA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :399-419
[8]   PRESCRIBING THE SYMMETRIC FUNCTION OF THE EIGENVALUES OF THE SCHOUTEN TENSOR [J].
He, Yan ;
Sheng, Weimin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) :1127-1136
[9]  
Ledoux M., 2000, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V9, P305, DOI 10.5802/afst.962
[10]   Deforming metrics with negative curvature by a fully nonlinear flow [J].
Li, JY ;
Sheng, WM .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (01) :33-50