On minimax wavelet estimators

被引:94
作者
Delyon, B [1 ]
Juditsky, A [1 ]
机构
[1] INST NATL RECH INFORMAT & AUTOMAT,INISA,F-35042 RENNES,FRANCE
关键词
D O I
10.1006/acha.1996.0017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper minimax rates of convergence for wavelet estimators are studied. The estimators are based on the shrinkage of empirical coefficients <(beta)over cap>(jk) of wavelet decomposition of unknown function with thresholds lambda(j). These thresholds depend on the regularity of the function to be estimated. In the problem of density estimation and nonparametric regression we establish upper rates of convergence over a large range of functional classes and global error measures. The constructed estimate is minimax (up to constant) for all L(pi) error measures, 0 < pi less than or equal to infinity simultaneously. (C) 1996 Academic Press, Inc.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 24 条
[1]  
ANDERSSON L, 1993, UNPUB WAVELETS CLOSE
[2]  
[Anonymous], 1993, Ten Lectures of Wavelets
[3]  
Bergh J., 1976, INTERPOLATION SPACES
[4]  
Cohen A., 1992, COMPT REND ACAD SC A, V316, P417
[5]  
DELYON B, 1994, 856 IRISA
[6]  
DONOHO D, 1993, UNPUB DENSITY ESTIMA
[7]  
DONOHO D, 1993, ADAPTING UNKNOWN SMO
[8]  
DONOHO D, 1993, UNPUB WAVELET SHRINK
[9]  
DONOHO DL, 1992, MINIMAX RISK LP BALL
[10]  
DONOHO DL, 1992, MINIMAX ESTIMATION V