Integral functionals that are continuous with respect to the weak topology on W01,p(Ω)

被引:1
作者
Cerny, Robert [1 ]
Hencl, Stanislav [1 ]
Kolar, Jan [2 ]
机构
[1] Charles Univ Prague, Dept Math Anal, Prague 18600 8, Czech Republic
[2] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
Weak continuity; Nonlinear integral functional; Sobolev spaces; Linearity;
D O I
10.1016/j.na.2009.01.117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of N-R be a bounded open set and let g: Omega x R -> R be a Caratheodory function that satisfies standard growth conditions. Then the functional Phi(u) = integral(Omega) g (x, u(x)) dx is weakly continuous on W-0(1,p)(Omega), 1 <= p <= infinity, if and only if g is linear in the second variable. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2753 / 2763
页数:11
相关论文
共 5 条
[1]  
[Anonymous], 1989, GRAD TEXTS MATH
[2]  
Dacorogna B., 1982, Weak Continuity and Weak Lower Semicontinuity of Non-linear Functionals
[3]   Integral functionals that are continuous with respect to the weak topology on W01,p (0,1) [J].
Hencl, S ;
Kolár, J ;
Pangrác, O .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (01) :81-87
[4]   Three topological problems about integral functionals on Sobolev spaces [J].
Ricceri, B .
JOURNAL OF GLOBAL OPTIMIZATION, 2004, 28 (3-4) :401-404
[5]  
Serrin J., 1961, Trans. Am. Math. Soc, V101, P139, DOI [10.1090/S0002-9947-1961-0138018-9, DOI 10.1090/S0002-9947-1961-0138018-9]